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The goal of these notes is to explain how k-linear stable ∞-categories with full exceptional
collections can be studied using the formalism of parametrized perverse schobers.

In Section 1, we begin with a brief summary of the notion of a perverse schober parametrized
by a ribbon graph, and then recall some properties of its induction functors.

In Section 2, we will recall the construction of the directed category on a subset of objects of
an∞-category. We will then show that any directed category on a finite set of spherical objects
arises as the global sections of a perverse schober on the disc. The parametrizing spanning
graph will be given by a linear graph with a single external edge.

In the final Section 3, given a perverse schober parametrized by a linear graph with a sin-
gle external edge, we will construct a new perverse schober parametrized by the same graph,
together with two equivalences between their ∞-categories of global sections. These two equiv-
alences will have the property of mapping left induced object to right induced objects (or vice
versa). In the case of a perverse schober arising from a collection of spherical objects, they
will thus map the standard exceptional collection to the costandard coexceptional collection,
or vice versa, reminiscent of the Ringel duality in the theory of highest weight abelian categories.

Prerequisites: We will assume familiarity with the theory of stable ∞-categories and the
theory of dg categories.
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1 Recollections on perverse schobers

1.1 Marked surfaces and spanning graphs

Definition 1.1. A marked surface (S, M) consists of compact oriented topological surface S
with non-empty boundary S and a finite set of marked points M ⊂ S, such that every boundary
component contains at least one marked point. We typically just write S for the marked surface
(S, M).

In the later parts of these notes, we will mostly be interested in the disc, considered as a
marked surface with one or two marked points, also called the 1-gon and 2-gon.

By a graph G, we will mean a graph with a finite set of vertices and edges. We allow
external edges, meaning edges which are incident once to only a single vertex. Each internal
edge of a ribbon graph consists of two halfedges, lying at the two vertices incident to the edge.
For simplicity, we will not allow loops in graphs, meaning edges which are incident to the same
vertex twice.

The geometric realization |G| of a graph G is the corresponding topological space, obtained
by gluing together an interval for every edge along the vertices.

Definition 1.2. We call a graph G a spanning graph of a marked surface S if it is equipped
with an embedding i : |G| ⊂ S\M satisfying that

• i is a homotopy equivalence,

• only the external endpoints of the external edges intersect the boundary ∂S, and

• ι induces a bijection between the set of external edges of G and the connected components
of ∂S\M .

Remark 1.3. A ribbon graph is a graph G equipped with a cyclic order on the set of the
incident half-edges at every vertex v of G.

If G is a spanning graph of a marked surface S, then it inherits a canonical ribbon graph
structure, via the counterclockwise order induced by the orientation of S.

Example 1.4. The annulus (in green) with two marked points (in orange) together with a
spanning graph (in black).

v1 v2

e4

e2

e1 e3

1.2 Exit paths and global sections

Definition 1.5. The exit path category Exit(G) ∈ Cat∞ of a graph G is defined as the nerve
of the 1-category with

• objects the vertices and edges of G and

• non-identity morphisms of the form v → e with v a vertex incident to an edge e.
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Example 1.6. The exit path category of the trivalent spanning graph from Example 1.4 can
be depicted as follows:

e4

e1 v1 v2 e3

e2

Remark 1.7. The exit path category of a graph G is 1-skeletal, and hence for any∞-category
C there exists a bijection

π0 Fun(Exit(G),C) ≃ HomSet∆(Exit(G),C) ≃ HomFun((∆≤1)op,Set)(tr≤1(Exit(G)), tr≤1(C)) ,

where tr≤1(C) ∈ Fun((∆≤1)op, Set) is the 1-truncation, i.e. the pullback along (∆≤1)op ⊂ ∆op.
Informally, this means that an ∞-functor Exit(G)→ C is uniquely specified by assignments on
objects and morphisms (an no further ’higher’ data).

Remark 1.8. Let St denote the ∞-category of (small) stable ∞-categories. We can consider
ribbon graphs as stratified spaces with the 0-strata given by the vertices and the 1-strata by
the (open) edges. The datum of a functor Exit(G)→ St can be shown to be equivalent to the
datum of a St-valued constructible sheaf on G, see for instance [PT22].

Motivated by the above remark, we introduce the following terminology:

Definition 1.9. Let F : Exit(G)→ St be a functor. We denote the limit of F by

RΓ(G,F) := limF ∈ St

and call this stable ∞-category the ∞-category of global sections of F.

We note that the forgetful functor St→ Cat∞ preserves limits.

1.3 Perverse schobers

For n ≥ 1, we denote by Spn the n-spider, given by the ribbon graph with a single vertex v and
n incident external edges e1, . . . , en.

Definition 1.10 ([CHQ23]). Let n ≥ 1. A perverse schober on the n-spider consists of the
following data:

(1) If n = 1, a spherical functor between stable ∞-categories

F : V→ N

meaning that F admits a right adjoint G, such that the twist functor CV = cof(idV
unit−−→

GF ) ∈ Fun(V,V) and cotwist functor CN = fib(FG
counit−−−−→ idN) ∈ Fun(N,N) are autoe-

quivalences.

(2) If n ≥ 2, a collection of functors of stable ∞-categories

(Fi : Vn ←→ Ni)i∈Z/nZ

satisfying that
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(a) Fi admits adjoints Fi ⊣ Gi ⊣ Hi,
(b) Gi is fully faithful, which is equivalent to FiGi ≃ idNi

via the counit,
(c) Fi ◦Gi−1 is an equivalence of ∞-categories,
(d) Fi ◦Gj ≃ 0 if j ̸= i, i− 1,
(e) fib(Hi−1) = fib(Fi) as full subcategories of Vn.

We remark that condition (e) implies condition (c).

Note that a collection of functors as above is the same data as a functor Exit(Spn)→ St, with
Spn the n-spider, mapping v → ei to Fi.

Remark 1.11. Let n ≥ 2 and F : Exit(Gn) → St a perverse schober on the n-spider. Using
condition (e), one can show that

F(v → ei)L ≃ F(v → ei−1)R ◦ F(v → ei−1) ◦ F(v → ei)L .

Stated informally, this means that left induction (see also below) from ei to v yields the same
objects as right induction from ei+1 to v.

Definition 1.12. A functor F : Exit(G) → St is called a G-parametrized perverse schober if
for each vertex v of valency n of G, with corresponding inclusion Exit(Spn) ⊂ Exit(G), the
restriction F|Exit(Spn) defines a perverse schober on the n-spider in the sense of Definition 1.10

1.4 Induction

Given a G-parametrized perverse schober F, the limit diagram for RΓ(G,F) supplies for each
vertex v of G a functor RΓ(G,F) → F(v), which we denote by evv. One can show that evv

admits left and right adjoint functors [Chr25].

Definition 1.13. Let v be a vertex of G. The left induction functor indL
v : F(v) → RΓ(G,F)

from v is defined as the left adjoint of evv. Similarly, the right induction functor indR
v : F(v)→

RΓ(G,F) is defined as the right adjoint of evv.

For any n ≥ 1, we let G↓,m be the linear graph on n-vertices with one external edge, which
we depict as follows:

vn

. . .

vi

. . .

v1

en

ei+1

ei

e2

e1

Note that G↓,m is for any n ≥ 1 a spanning graph of the 1-gon.
Proposition 4.12 together with the proof of Lemma 4.20 in [Chr25] imply the following:

Lemma 1.14 ([Chr25]). Let F be a G↓,m-parametrized perverse schober.
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(1) The functors indL
vn

, indR
vn

: F(vn)→ RΓ(G↓,m,F) are fully faithful.

(2) Then for all 1 ≤ i < n the composite functors

fib(F(vi → ei+1)) ⊂ F(vi)
indL

vi−−−→ RΓ(G↓,m,F)

and
fib(F(vi → ei+1)) ⊂ F(vi)

indR
vi−−−→ RΓ(G↓,m,F)

are fully faithful.

(3) Let X ∈ fib(F(vi → ei+1)) and Y = F(vi → ei)(X) ∈ F(ei). Then there exists an equiva-
lence of ∞-categories F(ei) ≃ F(e1), denoted F→(γ)1, such that

eve1(indL
vi

(X)) ≃ F→(γ)(Y ) ∈ F(e1) .

2 Perverse schobers for directed categories

2.1 The directed subcategory on an ordered collection of objects

We fix a field k.

Definition 2.1. Let C be a k-linear dg category and X1, . . . , Xm ∈ C a finite ordered collection
of (not necessarily distinct) objects. We define Ĉ(X1, . . . , Xm) as the dg category with

• objects X̂1, . . . , X̂m and

•

RHomĈ(X1,...,Xm)(X̂i, X̂j) =


RHomC(Xi, Xj) i < j

k i = j

0 else.

• composition of morphisms induced by the composition of morphisms in C.

We note that there is a canonical dg-functor Ĉ(X1, . . . , Xm)→ C.

Remark 2.2. An A∞-categorical version of the above definition was given by Seidel in [Sei08,
Section I.(5n)], called the directed category construction.

Definition 2.3. (1) We call a dg category A with a directed set of objects Y1, . . . , Ym upper
triangular unipotent if RHomA(Yi, Yj) ≃ 0 for j < i and RHomA(Yi, Yi) ≃ k as chain
complexes.

(2) We call a dg category A with a directed set of objects Y1, . . . , Ym′ upper triangular quasi-
unipotent if RHomA(Yi, Yj) ≃ 0 for j < i and RHomA(Yi, Yi) ≃ k in D(k).

Remark 2.4. The directed subcategory comes with a canonical dg functor Ĉ(X1, . . . , Xm)→
C, mapping X̂i to Xi.

Given a dg functor f : A → C with A upper triangular unipotent, if it factors through the
dg functor Ĉ(X1, . . . , Xm) → C, then there is a unique such factorization. This is the case if
the image of A is contained in {X1, . . . , Xm} and f preserves the respective orders on objects.

1Here γ refers to the curve starting at ei and going downwards to e1, always ’turning left’ at the 2-valent
vertices for left induction, and always ’turning right’ for right induction. The equivalence F→(γ) is the transport
equivalence of F along γ.
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Lemma 2.5. Any upper triangular quasi-unipotent dg category C admits a quasi-equivalence
C ′ → C from a cofibrant upper triangular unipotent dg category.

Proof. The dg functor Ĉ(Y1, . . . , Ym)→ C is a quasi equivalence from a upper triangular unipo-
tent dg category. We further can cofibrantly Ĉ(Y1, . . . , Ym) via a cofibrant upper triangular
unipotent dg category, see p.14 in [Kel06].

Lemma 2.6. Let A be an upper triangular quasi-unipotent dg category with objects Y1, . . . , Ym

and f : A→ C a dg functor inducing a quasi-equivalence RHomA(Yi, Yj) ≃ RHomC(f(Yi), f(Yj))
for all i < j. Then there exists a zig-zag of quasi-equivalences between A and Ĉ(f(Y1), . . . , f(Ym)).

Proof. Let A′ → A be a unipotent replacement. Then the composite functor A′ → C lifts by
Remark 2.4 to a quasi-equivalence A′ → Ĉ(f(Y1), . . . , f(Ym)).

Let C be a k-linear, idempotent complete stable ∞-category and X1, . . . , Xm ∈ C a finite
ordered collection of (not necessarily distinct) objects. Then there exists a dg category C, unique
up to Morita equivalence, together with an equivalence of k-linear ∞-categories Dperf(C) ≃
C. Let Y1, . . . , Ym ∈ Perf(C) be a collection of dg modules, whose image in Dperf(C) ≃ C

is equivalent to X1, . . . , Xm. We further choose a collection of fibrant-cofibrant dg modules
Z1, . . . , Zm ∈ Perf(Ĉ(Y1, . . . , Ym)), such that Zi ≃ Ŷi ∈ dgMod(Ĉ(Y1, . . . , Ym)). Then we can
define the ∞-categorical version of the directed category on X1, . . . , Xm as the dg nerve

Ĉ(X1, . . . , Xm) := Ndg({Z1, . . . , Zm})

of the full dg subcategory of Perf(Ĉ(Y1, . . . , Ym)) spanned by Z1, . . . , Zm.
We remark that there exists a fully faithful functor Ĉ(X1, . . . , Xm) ⊂ Dperf(Ĉ(Y1, . . . , Ym)),

mapping Xi to the image Zi.

Remark 2.7. The choice of implementation of the above construction of Ĉ(X1, . . . , Xm) is for
illustrative purposes. An equivalent construction in purely ∞-categorical language would be as
a full subcategory of the limit of a diagram of stable ∞-categories of the following form:

Dperf(k) Dperf(k) . . . Dperf(k)

C C . . . C

Fun(∆m−1,C)

-⊗Xm -⊗Xm−1 -⊗X1

fibn−2,n−1[−1]
fib0,1[−m+1]πn−1

Here fibi,i+1 is the fiber functor of the i-th and (i + 1)-th entries. However checking that these
two constructions are equivalent involves some explicit computations of the morphism objects
in the above limit that we do not wish to unravel here.

2.2 Perverse schobers from collections of spherical objects

Construction 2.8. Let C be a small k-linear stable ∞-category and S = {S1, . . . , Sm} ∈ C an
ordered collection of spherical objects. We define a functor FS : Exit(G↓,m)→ St as follows:

• We set FS(ei) = C for all 1 ≤ i ≤ m.

• We set FS(vm) = Dperf(k) and FS(vm → em) = (-)⊗Sm : Dperf(k)→ C. Note that (-)⊗Sm

is a spherical functor by assumption.
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• Fix 1 ≤ i ≤ m− 1. We set FS(vi) to be the following pullback in Cat∞:

Dperf(k)
→
⊕(-)⊗Si

C Fun(∆1,C)

Dperf(k) C

⌟ ev0

(-)⊗Si

We note that Dperf(k)
→
⊕(-)⊗Si

C is also called the lax sum along the functor (-)⊗ Si. We
define FS(vi → ei+1) as the composite functor

FS(vi → ei+1) := ϱ1 : FS(vi) = Dperf(k)
→
⊕(-)⊗Si

C→ Fun(∆1,C) ev1−−→ C

and FS(vi → ei) as the composite functor

FS(vi → ei) := ϱ2 : FS(vi) = Dperf(k)
→
⊕(-)⊗Si

C→ Fun(∆1,C) cof−−→ C .

One can show that the functor FS from Construction 2.8 defines a perverse schober, by
computing the adjoints of the functor ϱ1, ϱ2 and directly checking the conditions. These adjoints
are described in [Chr22a, Lemma 3.3, Lemma 3.8].

Lemma 2.9. Let C be a stable ∞-category and let S = {S1, . . . , Sm} ⊂ C be a collection of
spherical objects.

(1) We define the m-th standard object as ∆m := indL
vm

(k) ∈ RΓ(G↓,m,FS) and the m-th
costandard object as ∇m := indR

vm
(k) ∈ RΓ(G↓,m,FS).

(2) Let 1 ≤ i ≤ m− 1. We define the i-th standard object as

∆i := indL
vm

((k[−1], 0, 0)) ∈ RΓ(G↓,m,FS)

where (k[−1], 0, 0) ∈ Dperf(k)
→
⊕(-)⊗Si

C denotes the essentially unique object which restricts
in Dperf(k) to k[−1] and in Fun(∆1,C) to Si[−1]→ 0. Similarly, we define the i-th costan-
dard object as

∇i := indR
vm

((k[−1], 0, 0)) ∈ RΓ(G↓,m,FS)

We note that eve1(∆i) ≃ Si for all 1 ≤ i ≤ m, which amounts to the statement that the
transport of F along left turning downwards facing trajectories is trivial.

Proposition 2.10. Let C be a stable ∞-category and let S = {S1, . . . , Sm} ⊂ C be a collection
of spherical objects.

(1) The standard objects {∆1, . . . , ∆m} ⊂ RΓ(G↓,m,FS) form a full exceptional collection.

(2) The costandard objects {∇1, . . . ,∇m} ⊂ RΓ(G↓,m,FS) form a full co-exceptional collection,
meaning a full exceptional collection after reversing their order.

Proof. We note that ϱ1((k[−1], 0, 0)) ≃ 0 and ϱ2((k[−1], 0, 0)) ≃ cof(Si[−1] → 0) ≃ Si ∈ C.
Thus (k[−1], 0, 0) ∈ fib(FS(vi → ei+1). It thus follows from Lemma 1.14 that for all 1 ≤
i ≤ m, the global sections ∆i and ∇i are exceptional. Using the description of the induction
functors from [Chr25, Prop. 4.12, Lem. 4.20], one can further show that {∆1, . . . , ∆m} are
semiorthogonal, as are {∇m, . . . ,∇1}. We leave to the reader to show that these two exceptional
collections are in fact full, meaning that they generate RΓ(G↓,m,FS) under finite limits and
colimits.
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Proposition 2.11. Let C be a k-linear small stable ∞-category and S = {S1, . . . , Sm} an
ordered collection of spherical objects in C. Then there exists a fully faithful functor

Ĉ(S1, . . . , Sm) ⊂ RΓ(G↓,m,FS)

mapping Ŝi to the i-th standard object ∆i.

Proof. Consider the functor RΓ(G↓,m,FS)→ FS(e1) = C from the limit cone of RΓ(G↓,m,FS) =
limFS. This functor is also denoted by eve1 .

We choose a dg functor ev : Perf(A)→ Perf(C) between dg categories, whose image under
Dperf(-) : dgCatk → St is equivalent to eve1 . We denote by ∆̃i ∈ Perf(A) a choice of object
whose image in RΓ(G↓,m,FS) is equivalent to ∆i and by S̃i ∈ Perf(C) the image of ∆̃i in
Perf(C).

We finally check that the dg subcategory generated by ∆̃1, . . . , ∆̃m is quasi-unipotent and
that this induces via Lemma 2.6 an equivalence Dperf(Ĉ(S1 . . . , Sm)) ≃ RΓ(G↓,m,FS), by com-
puting RHomPerf(A)(S̃i, S̃j) ≃ MorRΓ(G↓,m,FS)(∆i, ∆j). Indeed, we have

MorRΓ(G↓,m,FS)(∆i, ∆j) ≃ MorFS(vi)((k[−1], 0, 0), evvi(∆j))

≃


MorFS(vi)((k[−1], 0, 0),FS(vi → ei)R(Sj)) i < j

MorFS(vi)((k[−1], 0, 0), (k[−1], 0, 0)) i = j

MorFS(vi)((k[−1], 0, 0), (0, 0, 0)) i > j

≃


MorFS(ei)(Si, Sj) i < j

k i = j

0 i > j

2.3 Calabi–Yau completion

The goal of this section is to show that any proper k-linear stable ∞-category with an (always
finite) full exceptional collection arises from a directed category on a collection of spherical
objects, and hence as the global sections of a perverse schober.

Given a dg category, we denote by Perf(C) the dg category of compact fibrant-cofibrant dg
modules.

We fix a dg algebra A with finite dimensional homology over k. Let DA = RHomk(A, k) ∈
dgModA

A. Note that this bimodule corresponds to the Serre functor. We define the square-zero
extension dg algebra A⊕DA with underlying chain complex A⊕DA and multiplication

(a, x) · (a′, x′) = (aa′, a · x′ + x · a′) .

Note that A⊕DA is again finite dimensional and furthermore D(A⊕DA) ≃ DA⊕A ≃ A⊕DA
as (A⊕DA)-bimodules. Thus Perf(A⊕DA) is a proper, weak right 0-Calabi–Yau dg category.

Replacing DA by DA[−n] in the above construction, we similarly obtain a weak right n-
Calabi–Yau dg category Perf(A⊕DA[−n]). We remark that A⊕DA[−n] is Koszul-dual to the
n-Calabi–Yau completion of Keller [Kel11].

The inclusion i : A→ A⊕DA[−n] induces a functor F = i! : Perf(A)→ Perf(A⊕DA[−n]).

Lemma 2.12. Let M ∈ Perf(A) be an exceptional object, i.e. RHomPerf(A)(M, M) ≃ k. Then
F (M) ∈ Perf(A ⊕ DA[−n]) is an n-spherical object, meaning that RHomA⊕DA[−n](M, M) ≃
k ⊕ k[−n] and the functor between the derived ∞-categories

(-)⊗ F (M) ≃ Dperf((-)⊗L F (M)) : Dperf(k) −→ Dperf(A⊕DA[−n])
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is a spherical functor.

Proof. We may assume that M ⊂ A is a direct summand in Perf(A). If this is not the case, we
replace A by the dg algebra B = RHomPerf(A)(A⊕M, A⊕M) and use the observation that the
quasi-unital dg functor A⊕DA[−n] ⊂ B ⊕DB[−n] is a Morita equivalence.

We now find that

RHomPerf(A⊕DA[−n])(F (M), F (M)) ≃ RHomPerf(A)(M, M)⊕ RHomPerf(A)(M, DM [−n])
≃ k ⊕ (Dk)[−n]
⊂ A⊕DA[−n] = RHomA⊕DA[−n](A⊕DA[−n], A⊕DA[−n]) .

The right adjoint of the functor (-) ⊗L F (M) is given by RHomDperf(A⊕DA[−n])(F (M), -),
which is by the weak right n-Calabi–Yau property equivalent to RHomDperf(A⊕DA[−n])(-, F (M)[n])∗.
Thus, the right adjoint of RHomDperf(A⊕DA[−n])(M, -) is given by (-)⊗L F (M)[n]. Passing to de-
rived∞-categories and applying [Chr22b, Prop. 4.5], we find that that (-)⊗F (M) is a spherical
functor.

Corollary 2.13. Let C be a proper k-linear stable ∞-category with a full exceptional collection
∆1, . . . , ∆m. Then there exists a fully faithful functor

D̂(S1, . . . , Sm) ⊂ C ,

for a proper k-linear stable ∞-category D and a collection of spherical objects S = {S1, . . . , Sm}
in D, mapping Si to ∆i.

Further, by Proposition 2.11, there exists an equivalence of k-linear stable ∞-categories

C ≃ RΓ(G↓,m,FS) ,

mapping the ∆i’s to the standard objects in RΓ(G↓,m,FS).

Proof. We first note that any algebra object E in the symmetric monoidal∞-category Dperf(k)
arises from a dg algebra A with finite dimensional homology, see [Lur17, Prop. 7.1.4.6]. Fur-
thermore, RModE ≃ D(A) as k-linear ∞-categories, see [Chr22a, Prop. 2.19].

Let EndC(⊕m
i=1 ∆i) ∈ Alg(Dperf(k)) be the endomorphism object in the sense of [Lur17,

Section 4.7.1] and A a corresponding dg algebra. We remark that C is automatically idempotent
complete. Thus, by [Lur17, 7.1.2.1], C ≃ Dperf(A). We set D = Dperf(A⊕DA). The image of
∆1, . . . , ∆m under the functor

f : C ≃ Dperf(A) −→ D = Dperf(A⊕DA)

defines by Lemma 2.12 a collection S = {S1, . . . , Sm} of spherical objects in D, satisfying that

MorD(Si, Sj) ≃
{

MorC(∆i, ∆j) i < j

k ⊕ k i = j .

The functor Ĉ(∆1, . . . , ∆m) → D̂(S1, . . . , Sm) induced by C → D is an equivalence of ∞-
categories. Since Ĉ(∆1, . . . , ∆m) is equivalent to a full subcategory of C, we find a fully faithful
functor D̂(S1, . . . , Sm) ⊂ C.

Since the image of the functor D̂(S1, . . . , Sm)→ C stably generates C, and the image of the
fully faithful functor D̂(S1, . . . , Sm) → RΓ(G↓,m,FS) also stably generates, we find by [Lur17,
7.1.2.1] that RΓ(G↓,m,FS) ≃ C.
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3 Upwards-downwards duality

3.1 Duality for left and right induction

Let S be the marked surface with spanning graph G. Let v be a vertex of G with incident
edges e1, . . . , en. Let further F be a G-parametrized perverse schober.

We denote by
Cv : F(v)→ F(v)

the spherical twist functor of the spherical adjunction
n∏

i=1
F(v → ei) : F(v)←→

n∏
i=1

F(ei) :
n∏

i=1
F(v → ei)R .

Let B be the set of external edges of G. Then there is an adjunction arising from evaluation to
and induction from the boundary:∏

e∈B

eve : RΓ(G,F)←→
∏
e∈B

F(e) :
∏
e∈B

indL
e .

This adjunction is spherical, see [Chr25, Cor. 4.7]. We denote its spherical twist by CS.
Left and right induction from v to S are related as follows:

Proposition 3.1 ([Chr25, Prop. 4.23.(2)]). There exists an equivalence of functors

CS ◦ indL
v ≃ indR

v ◦ Cv : F(v) −→ RΓ(G,F) .

3.2 Perverse schobers on the 2-gon and equivalences of global sections

We denote by G↕,m the linear ribbon graph with m vertices and two external edges:

vm

. . .

vi

. . .

v1

em

em+1

ei+1

ei

e2

e1
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We similarly, denote by G↑,m the linear ribbon graph:

vm

. . .

vi

. . .

v1

em

em+1

ei+1

ei

e2

Let F↕ be a G↕,m-parametrized perverse schober. Then replacing F(vm) by fib(F(vm →
em+1), and removing F(em+1), we obtain a G↓,m-parametrized perverse schober, denoted F↓.
Similarly, replacing F(v1) by fib(F(v1 → e1)), we obtain the G↑,m-parametrized perverse schober
F↑.

Then there are equivalences of stable ∞-categories

RΓ(G↑,m,F↑) ≃ fib(eve1 : RΓ(G↕,m,F↕)→ F↕(e1))

and
RΓ(G↓,m,F↓) ≃ fib(evem+1 : RΓ(G↕,m,F↕)→ F↕(em+1))

Let ι↑ : RΓ(G↑,m,F↑) ⊂ RΓ(G↕,m,F↕) and ι↓ : RΓ(G↓,m,F↓) ⊂ RΓ(G↕,m,F↕) be the arising
fully faithful functors.

Proposition 3.2. The functor ι↑ admits left and right adjoints ι↑,L, ι↑,R, such that

ι↑,L ◦ ι↓, ι↑,R ◦ ι↓ : RΓ(G↓,m,F↓) −→ RΓ(G↑,m,F↑)

are equivalences of stable ∞-categories.

Proof idea. The functor

(ι↑,L, ι↓,L) : RΓ(G↕,m,F↕) −→ RΓ(G↑,m,F↑)×RΓ(G↓,m,F↓)

gives rise to a perverse schober on the 2-spider, arising from the perverse schober on the 2-spider

(eve1 , evem+1) : RΓ(G↕,m,F↕) −→: F↕(e1)× F↕(em+1) .

Let C be a k-linear stable∞-category with a collection of spherical objects S = {S1, . . . , Sm}.

11



We define the G↕,m-parametrized perverse schober F
↕
S as the diagram

C

Dperf(k)
→
⊕(-)⊗Sm

C

C

...

C

Dperf(k)
→
⊕(-)⊗S1 C

C

ϱ2

ϱ1

ϱ2

ϱ1

We denote ∇↓
i := ∆i and ∆↑

i = indL
vi

((k, Si, idSi)) ∈ RΓ(G↑,m,F↑
S).

Proposition 3.3. (1) There exists an equivalence in RΓ(G↑,m,F↑
S)

(ι↑)L ◦ ι↓(∆↓
i ) ≃ ∇↑

i .

(2) Suppose that Si is n-spherical. Then

(ι↑)R ◦ ι↓(∇↓
i ) ≃ ∆↑

i [n] .

Proof. We only prove part (1), the proof of part (2) is similar.
The essential ingredient to prove the above proposition is Proposition 3.1: We have Cvi((k[−1], 0, 0)) ≃

(k, Si, idSi). Thus,

CS ◦ ι↓(∆↓
i ) ≃ CS ◦ indL

vi
((k[−1], 0, 0))

≃ indR
vi
◦Cvi((k[−1], 0, 0))

≃ indR
vi

((k, Si, idSi))
≃ ι↑(∇↑

i ) .

We have (eve1 , evem+1)(∆↓
i ) ≃ (Si, 0). Thus:

CS ◦ ι↓(∆↓
i ) ≃ cof(ι↓(∆↓

i )→ indL
e1(Si)) .

We observe that eve1(CS ◦ ι↓(∆↓
i )) ≃ cof(Si → Si) ≃ 0, and thus CS ◦ ι↓(∆↓

i ) ∈ Im(ι↑). By the
fully faithfulness of ι↑, we thus obtain

CS ◦ ι↓(∆↓
i ) ≃ ι↑ ◦ (ι↑)L(CS ◦ ι↓(∆↓

i )) .
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Fr any X ∈ RΓ(G↑,m,F↑
S), we have

Mor((ι↑)L(indL
e1(Si)), X) ≃ Mor

RΓ(G↕,m,F
↕
S)(indL

e1(Si), ι↑(X))

≃ MorF(e1)(Si, eve1(ι↑(X))︸ ︷︷ ︸
≃0

)

≃ 0

This shows (by fully faithfulness of Yoneda) that (ι↑)L(indL
e1(Si)) ≃ 0.

Therefore,
ι↑ ◦ (ι↑)L(CS ◦ ι↓(∆↓

i )) ≃ ι↑ ◦ (ι↑)L ◦ ι↓(∆i) .

In total, we have shown
ι↑ ◦ (ι↑)L ◦ ι↓(∆i) ≃ ι↑(∇↑

i )

from which the assertion follows by the fully faithfulness of ι↑.
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