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Summary
We introduce a framework for the description of categorified perverse sheaves,

called perverse schobers, on surfaces with boundary in terms of constructible sheaves
of stable ∞-categories on ribbon graphs. We show that the global sections of some
of these sheaves describe the derived categories of a class of relative Calabi–Yau
dg-algebras, called relative Ginzburg algebras, associated with n-angulated sur-
faces. We use local-to-global principles to study the representation theory of these
Ginzburg algebras, relating it with the geometry of the underlying surface. Using
the derived categories of these relative Ginzburg algebras, we also construct a novel
class of additive categorifications of cluster algebras associated with marked surfaces
without punctures with coefficients in the boundary arcs. We show that these cluster
categories coincide with the topological Fukaya categories of the surfaces with values
in the derived category of 1-periodic chain complexes. We further study the relation
between perverse schobers, relative Calabi–Yau structures and exact ∞-structures
on ∞-categories.

Zusammenfassung
Wir führen ein Modell für die Beschreibung von kategorifizierten perversen Gar-

ben, genannt perverse Schober, auf Flächen mit Rand ein. Dieses Modell beschreibt
perverse Schober als konstruierbare Garben auf Bandgraphen, die Werte in sta-
bilen ∞-Kategorien annehmen. Wir zeigen, dass die globalen Schnitte mancher
dieser Garben die derivierten Kategorien einer Klasse von relativen Calabi–Yau
dg-Algebren, genannt relative Ginzburg-Algebren, beschreiben. Diese dg-Algebren
werden zu n-angulierten Flächen zugeordnet. Wir wenden lokal-global-Prinzipien
an, um die Darstellungstheorie dieser Ginzburg-Algebren zu studieren und mit der
Geometrie der zugrunde liegenden Flächen in Verbindung zu setzen. Aus den de-
rivierten Kategorien dieser relativen Ginzburg Algebren konstruieren wir auch eine
neue Klasse von additiven Kategorifizierungen von Cluster Algebren, assoziiert zu
Flächen mit markierten Punkten und mit Koeffizienten in den Randbögen. Wir
zeigen, dass diese Cluster Kategorien mit den topologischen Fukaya-Kategorien, mit
Werten in der derivierten Kategorie von 1-periodischen Kettenkomplexes, überein-
stimmen. Schließlich studieren wir die Beziehung zwischen perversen Schobern,
relative Calabi–Yau Strukturen und exakten ∞-Strukturen auf ∞-Kategorien.
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1 Introduction
Given a stratified topological space, there is an abelian category of perverse sheaves
on this space, arising as the heart of the perverse t-structure on the bounded derived
category of constructible sheaves. Perverse schobers are a, in general conjectural,
notion of categorified perverse sheaves. The first aim of this thesis is to develop
a framework for the treatment of perverse schobers on surfaces with boundary,
building on prior work of Kapranov-Schechtman on perverse sheaves on surfaces and
perverse schobers on the complex line [KS14, KS16]. We realize perverse schobers
on a surface with boundary as constructible sheaves on a spanning ribbon graph
embedded in the surface, valued in stable ∞-categories and satisfying certain local
conditions. Such perverse schobers are referred to as perverse schobers parametrized
by the ribbon graph. This framework is explicit, allowing for the study of concrete
examples. It also realizes many features of the conjectural full theory of perverse
schobers, such as a well-behaved notion of∞-category of global sections of a perverse
schober with support on the ribbon graph or a notion of monodromy.

The second aim of this thesis is to study categorifications of cluster algebras via
perverse schobers. Cluster algebras are a class of combinatorially defined commu-
tative algebras introduced by Fomin-Zelevinski [FZ02]. The main feature of cluster
algebras is that they come with a notion of mutation, which relates certain subsets
of the cluster algebras called clusters. We consider a class of cluster algebras as-
sociated with marked surfaces (without punctures). These cluster algebras can be
seen as arising from quivers with potentials associated with triangulations of the
surfaces [LF09], but also admit a beautiful alternative description as coordinates on
the Teichmüller spaces of the surfaces, see [GSV05, FG06, FG09, FT18]. From this
perspective, the cluster variables composing the clusters appear as lambda lengths,
which describe the lengths of certain geodesic curves for a given hyperbolic metric.

Cluster algebras admit a rich theory of categorification, and their study has lead
to many fruitful interactions between cluster algebras and representation theory. A
particular class of (additive) categorifications of cluster algebras are formed by so
called cluster categories, which are triangulated 2-Calabi-Yau categories, or possibly
generalization thereof such as 2-Calabi–Yau Frobenius extriangulated categories in
the sense of Nakaoka-Palu [NP19]. The collection of rigid objects in the cluster
categories are typically in bijection with the cluster variables (i.e. elements of the
clusters) of the corresponding cluster algebras. In the case of a cluster category
associated with a marked surface, the rigid objects are further in bijection with the
set of arcs, meaning certain embedded curves in the surface. Notice that each such
curve defines a Lagrangian submanifold of the surface (equipped with the symplectic
volume 2-form). There are different flavors of Fukaya categories associated with
surfaces, in which these curves define objects. We focus on the topological Fukaya
category of the marked surface, which can be defined purely in terms of higher
category and the topology of the surface, see [DK18, HKK17, DK15]. There are
further relations between extensions groups in the cluster categories and topological
Fukaya categories, which we survey further below. It is thus natural to ask:
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Question. What is the relation between topological Fukaya categories and cluster
categories of marked surfaces?

As it turns out, this question has a surprisingly simple answer, in terms of
the topological Fukaya category of the surface valued in the derived category of
1-periodic chain complexes of vector spaces, also called the 1-periodic topological
Fukaya category.

Theorem 1. The 1-periodic topological Fukaya category of an unpuctured marked
surface is a cluster category, categorifying the corresponding cluster algebra with
coefficients in the boundary arcs. This ∞-category arises as the global sections of a
parametrized perverse schober.

For the categorification, we equip the 1-periodic topological Fukaya category with
a Frobenius exact ∞-structure, which gives rise to an extriangulated structure on
the homotopy 1-category. The corresponding stable triangulated category, obtained
by the localization at the collection of morphisms factoring through an injective
projective object, conjecturally describes the previously known cluster category of
the marked surface, which categorifies the cluster algebra without coefficients. This
conjecture is verified for certain classes of surfaces.

Theorem 1 is the final result of this thesis, building on the following independent
result, which are further explained below.

• We introduce a new class of dg-algebras associated with n-angulated surfaces
(allowing punctures), referred to as relative Ginzburg algebras. These dg-
algebras are relative weakly left n-Calabi–Yau in the sense of Brav–Dyckerhoff
[BD19] and generalize the 3-Calabi–Yau Ginzburg dg-algebras associated with
triangulated marked surfaces. We show that their derived categories arise as
the global sections of perverse schobers.

• Using local-to-global arguments, we relate the geometry of the surface with
the representation theory of the relative Ginzburg algebra. This includes as-
sociating objects in these categories with curves and describing their derived
Hom’s in terms of intersections of curves. These results form what is called a
partial geometric model of these categories.

• We describe the 1-periodic topological Fukaya category as a quotient of the
derived category of the relative Ginzburg algebra associated with a triangu-
lated surface. We also show that the passage to this quotient can be performed
on the level of perverse schobers. From this, it will follow that the partial ge-
ometric model for the derived category of the relative Ginzburg algebra gives
rise to a geometric model for the 1-periodic topological Fukaya category.

• We describe ways to construct relative Calabi–Yau structures on the global sec-
tions of parametrized perverse schobers, which apply to the relative Ginzburg
algebras and to the 1-periodic topological Fukaya category. We show that
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relative weak right 2-Calabi–Yau structures give rise to Frobenius exact ∞-
structures, satisfying that the corresponding homotopy categories are Calabi–
Yau Frobenius extriangulated.

We proceed with a more detailed review of the contents of this thesis. We begin
in Section 1.1, corresponding to Section 3 in the main text, with describing the
framework of parametrized perverse schobers on surfaces. Section 1.2, corresponding
to Section 4, first recalls the different flavors of (relative) Calabi–Yau structures and
then describes their gluing properties and their relation with perverse schobers.
We proceed in Section 1.3, corresponding to Section 5, by explaining the relation
between derived categories of relative Ginzburg algebras and parametrized perverse
schobers, and how this leads to a partial geometric model of their derived categories.
In the final Section 1.4, corresponding to Section 6, we introduce cluster categories
in more detail and further elaborate on Theorem 1. This thesis is written in the
language of ∞-categories, we refer to Section 2 in the main text for background.

1.1 Perverse schobers on surfaces
Perverse schobers are a conjectural notion of categorified perverse sheaves, proposed
by Kapranov-Schechtman [KS14]. A direct categorification of perverse sheaves, as
objects in the heart of the perverse t-structure, is currently not possible, since it
is unclear what the derived category of constructible sheaves valued in stable ∞-
categories should be (the problem lies in the deriving).

Perverse schobers as an ad-hoc categorification
The remarkable idea of Kapranov-Schechtman is to use linear algebraic descrip-

tions of the abelian category of perverse sheaves, when available, to find what is
called an ’ad-hoc’ categorification. For instance, consider the complex line C with
strata {0} and C∗ = C\{0}. Then:

Theorem 2 ([GGM85]). The abelian category of perverse sheaves on C is equivalent
to the category of diagrams of vector spaces

f : V ←→ N :g

satisfying that fg − idV and gf − idN are invertible.

The vector space V is called the vector space of vanishing cycles and the vector
space N is called the vector space of nearby cycles. Theorem 2 is categorified by
the following definition:

Definition ([KS14]). A perverse schober on C is an adjunction of stable∞-categories

F : V←→ N :G

satisfying that
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• the twist functor TV := cof(idV
u−→ GF ) : V → V, defined as the cofiber of the

unit u of F ⊣ G in the stable ∞-category of endofunctors Fun(V,V), is an
equivalence.

• the cotwist functor TN := fib(FG cu−→ idN) : N→ N, defined as the fiber of the
counit cu of F ⊣ G, is an equivalence.

Such adjunctions were already studied before their relation with perverse sheaves
was noticed, they are called spherical adjunctions, and the functors F and G are
called spherical functors, see [AL17].

A similar description exists for the abelian category of perverse sheaves on a
oriented surfaces with boundary, see [KS16] or Theorem 3.17, of which Theorem 2
is a special case. For this, one chooses a so called spanning graph of the surface,
which is a ribbon graph embedded into the surface, onto which the surface retracts.
A perverse sheaf can be encoded in terms of a suitable pair of a constructible sheaf
and a constructible cosheaf on the graph. The sheaf describes the derived sections of
the perverse sheaf with support on the ribbon graph. A remarkable feature is that
the derived sections with support on the graph are concentrated in a single degree,
thus describing a constructible sheaf of vector spaces on the graph. This admits a
categorification, in terms of a constructible sheaf on the graph valued in stable ∞-
categories, satisfying certain local properties encoding the perverseness. We refer to
such constructible sheaves as perverse schobers parametrized by the ribbon graph.
We remark that in the categorification, the constructible cosheaf is not lost, it arises
by passage to the adjoint cosheaf of the sheaf (see just below).

As constructible sheaves
Constructible sheaves on a graph Γ can be encoded as functors out of the exit

path category Exit(Γ), whose

• objects are the vertices and edges of Γ,

• morphisms are of the form v → e, with v a vertex and e an incident edge,

see also Theorem 3.9 for background. A Γ-parametrized perverse schober F is thus
a functor F : Exit(Γ) → St with values in the ∞-category of stable ∞-categories.
Passage to the left adjoint diagram of F, meaning the diagram which maps each mor-
phism α in Exit(Γ) to the left adjoint functor of F(α), defines a diagram Exit(Γ)op →
St, which can be regarded as a constructible cosheaf on Γ.

Given any n-valent vertex v of Γ, we consider the subcategory Exit(Γ)v/ ⊂
Exit(Γ) consisting of the vertex v and the n incident halfedges. We show that the re-
striction of F to Exit(Γ)v/ is a particular form, obtained from applying Dyckerhoff’s
categorified Dold-Kan correspondence [Dyc21] to a spherical functor F : V → N,
considered as a 2-term complex in degrees 1, 0. A precise description of this rela-
tion is given in Section 3.2. If V ̸= 0, we call the vertex v a singularity of F. The
perverse schober F assigns to each edge of Γ an ∞-category which is equivalent to
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the ∞-category N. We call N the generic stalk of F. This captures the fact that
perverse sheaves on surfaces describe a local system away from their singularities,
so that all non-singular stalks are equivalent.

Global sections
The∞-category of global sections H(Γ,F) of a Γ-parametrized perverse schober

F is defined as the limit of F in St. Under mild technical assumptions, the global
sections of F are equivalent to a suitable colimit of the left adjoint diagram of F .
The ∞-category of global section is a full subcategory of the (∞, 2)-categorical lax
limit of F, which describes the∞-category of local sections. Further, global sections
can be glued together from compatible local sections. Formally, this is realized by
describing H(Γ,F) as the ∞-category of coCartesian sections of the Grothendieck
construction of F, which is a full subcategory of the ∞-category of all sections of
the Grothendieck construction, see Definition 3.36.

Note that for a perverse sheaf F , the global sections of the corresponding con-
structible sheaf on Γ describe the global sections of F with support on Γ. The
∞-category H(Γ,F) of global sections thus categorifies the derived sections with
support on Γ.

Given a contraction of ribbon graphs c : Γ→ Γ′ which contracts edges, but col-
lides no singularities of F, we show in Proposition 3.47 that there is an induced
Γ′-parametrized perverse schober c∗(F) with an equivalent ∞-category of global
sections. This allows us to compare perverse schobers parametrized by different
spanning graphs of a surface.

Monodromy
Consider a marked surface S with spanning graph Γ and a Γ-parametrized per-

verse schober F with set of singularities P . In Section 3.3.4, we describe how to
associate to each loop in S\P an autoequivalence of the generic stalk of F, called
the monodromy. This monodromy possesses all expected properties, such as only
depending on the homotopy class of the loop, composing when composing loops
with identical basepoints, and not changing under contractions of the ribbon graph
Γ. We also show that two parametrized perverse schobers without singularities and
with an equivalent generic stalk are equivalent if and only if their monodromies are
equivalent, see Proposition 3.63.

1.2 Relative Calabi–Yau structures
Let k be a field. A k-linear triangulated category C with finite dimensional Hom’s
is called n-Calabi–Yau if there exists an isomorphism of vector spaces

HomC(X, Y ) ≃ HomC(Y,X[n])∗ , (1)

bifunctorial in X, Y ∈ C. A better behaved version of Calabi–Yau structure for
proper k-linear stable ∞-categories (which we assume to be presentable) is the
following:
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Definition 1.1. Let C be a proper k-linear stable ∞-category and S the Serre
functor, meaning that

RHomC(X, Y ) ≃ RHomC(Y, S(X))∗ ∈ D(k) ,

bifunctorial in compact objects X, Y ∈ Cc. A weak right n-Calabi–Yau structure on
C consists of an equivalence of functors

S ≃ [n] .

Note that RHom(idC, S) ≃ HH(C)∗ describes the k-linear dual Hochschild ho-
mology of C. The identification S ≃ [n] may additionally be required to arise from a
dual cyclic homology class under the morphism HHS1(C)∗ → HH(C)∗ and this leads
to the notion of a right n-Calabi–Yau structure.

The Serre functor S is given by the bimodule right dual id∗
C of the evaluation

bimodule. If C is smooth, but not necessarily proper, the evaluation bimodule admits
a left dual, denoted id!

C, which describes in the smooth and proper case the inverse
of the Serre functor.

Definition 1.2 ([Gin06]). Let C be a smooth k-linear stable ∞-category. A weak
left n-Calabi–Yau structure on C consists of an equivalence

id!
C ≃ idC[−n] .

Note that RHom(id!
C, idC) ≃ HH(C) describes the Hochschild homology of C.

Similarly, a left n-Calabi–Yau structure on C consists of an S1-equivariant weak
left n-Calabi–Yau structure, meaning that the corresponding Hochschild class arises
from a negative cyclic homology class.

As emphasized by Brav-Dyckerhoff [BD19], left Calabi–Yau structures should
be considered as non-commutative versions of orientations of topological manifolds.
Indeed, if X is a closed oriented manifold of dimension n, then the ∞-category
Fun(X,D(k)) of D(k)-valued local systems on X inherits a canonical left n-Calabi–
Yau structure. This perspective is extended by Brav-Dyckerhoff by introducing a
non-commutative analog of a compact oriented manifold with boundary, referred to
as a Calabi–Yau structure on a functor, or as a relative Calabi–Yau structure. Let
F : C → D be a k-linear functor between smooth k-linear stable ∞-categories with
right adjoint G. A weak left n-Calabi–Yau structure on F consists of a class in the
relative Hochschild homology HH(D,C) := cof(HH(C) HH(F )−−−−→ HH(D)), which gives
rise to a specific fiber and cofiber sequence of endofunctors of D of the form

FG[−n] counit−−−→ [−n] −→ id!
D .

This means that the bimodule left dual and the shift functor do not necessarily
agree, but there is a canonical map whose fiber is described by the endofunctor
FG[−n]. There is a similar notion of (weak) relative right Calabi–Yau structure.
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Brav-Dyckerhoff formulate their notion of relative Calabi–Yau structure in terms
of k-linear dg-categories. We give in Section 4 a purely∞-categorical formulation of
the notion of relative Calabi–Yau structure and this allows us to consider any E∞-
ring spectrum R as a base. We however do not discuss the S1-equivariant versions
of R-linear Calabi–Yau-structures.

Gluing Calabi–Yau strutures
Given two compact oriented manifolds with two identical boundary components,

we can glue the two manifolds together along these boundary components and
this yields a new oriented manifold with boundary. Remarkably, there is a non-
commutative version of this gluing construction for relative Calabi–Yau structures.
For this, consider a pushout diagram of R-linear smooth ∞-categories:

B3

B2 C2

B1 C1 D

⌜

We assume that each of the above functors admits both a left and a right adjoint
functor.

Theorem 3 (Theorem 4.33, [BD19] for R = k a field). If the functors B1×B2 → C1
and B2 ×B3 → C2 carry R-linear weak relative left n-Calabi–Yau structures, which
are compatible at B2, then the functor B1 × B3 → D inherits an R-linear weak
relative left n-Calabi–Yau structure.

There is also an analog of Theorem 3 for weak relative right Calabi–Yau struc-
tures, see Theorem 4.35.

Calabi–Yau structures and perverse schobers
We apply the gluing properties of relative Calabi–Yau structures to construct rel-

ative Calabi–Yau structures on the global sections of parametrized perverse schobers.
One of the main results is the following:

Theorem 4 (Theorem 4.44). Let F be a Γ-parametrized perverse schober without
singularities, whose generic stalk N is smooth and admits a weak left (n−1)-Calabi–
Yau structure. If the monodromy of F acts trivially on the corresponding Hochschild
homology class of N, then H(Γ,F) admits a relative weak left n-Calabi–Yau struc-
ture.

This generalizes [BD19, Thm. 7.2], constructing relative Calabi–Yau structures
on k-linear topological Fukaya-categories of framed marked surfaces.

We also describe ways to construct relative Calabi–Yau structures on the global
sections of parametrized perverse schobers with non-trivial singularities, which are
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locally described by spherical functors which carry Calabi–Yau structures. This is
applied to construct relative Calabi–Yau structures on the derived categories of rel-
ative Ginzburg algebras associated with n-angulated surfaces.

Relation with Frobenius exact ∞-structures
An exact ∞-category, as defined by Barwick [Bar15], consists of an additive

∞-category C, together with chosen subsets of morphisms called inflations and de-
flations, satisfying ∞-categorical analogs of the axioms of exact 1-categories. Ex-
amples of exact ∞-categories are the nerves of exact 1-categories, by keeping the
inflations and deflations of the exact 1-category. Other examples are stable ∞-
categories, where all morphisms are considered as both inflations and deflations.
The homotopy 1-category of an exact ∞-category inherits the structure of an extri-
angulated 1-category, see [NP20]. The extensions in an extriangulated 1-category C
are organized into an additive bifunctor E : Cop×C → Ab, valued in abelian groups.

Given an exact functor F : C → D between stable ∞-categories, we can pull
back the split exact structure on D to an exact structure on C, such that a fiber
and cofiber sequence is exact if and only if its image under F is split exact. Stated
differently,

E(X, Y ) ⊂ Ext1
C(X, Y )

describes the kernel of the map F : Ext1
C(X, Y ) → Ext1

D(G(X), G(Y )). If F is a
spherical functor, then this exact ∞-structure is Frobenius, meaning that injective
and projective objects coincide, see Proposition 4.54 or [BS21, Thm. 4.23]. We show
that an additional weak right n-Calabi–Yau structure on the right adjoint G of F
gives rise to an isomorphism

E(X, Y ) ≃ E(Y,X[n− 2])∗ ,

bifunctorial in X, Y ∈ Cc. In particular, if n = 2, the extriangulated category hoCc

is 2-Calabi–Yau. This clarifies the relation between weak relative right Calabi–Yau
structures and the triangulated Calabi–Yau property (1).

We will apply these results to construct such 2-Calabi–Yau Frobenius extri-
angulated structures on the homotopy categories of 1-periodic topological Fukaya
categories, which will be essential for the categorification of the cluster algebras.

1.3 Ginzburg algebras of n-angulated surfaces
In Section 5, we describe and study the derived categories of relative higher Ginzburg
algebras arising from n-angulated surfaces using parametrized perverse schobers.

Ginzburg algebras are a class of weakly left 3-Calabi-Yau dg-algebras, associ-
ated to quivers with potential, first considered by Ginzburg in [Gin06]. Their de-
rived categories have been used for, among other things, the categorification of
cluster algebras, see [Kel12] for a survey, and the algebraic description of Fukaya
categories [Smi15, Smi21, SW23]. Particularly relevant for this work are a class of
Ginzburg algebras obtained from a quiver with potential constructed from a marked
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surface with an ideal triangulation, introduced by Labardini-Fragoso [LF09]. By
a marked surface, we mean a compact, oriented topological surface with possibly
empty boundary and a non-empty set of marked points on the boundary and in the
interior (also called punctures), satisfying that each boundary component contains
a marked point.

We generalize the construction of these Ginzburg algebras in two directions:
firstly, we consider relative Ginzburg algebras, which are not weakly left 3-Calabi–
Yau, but instead weakly relative left 3-Calabi–Yau. Relative Ginzburg algebras
were also independently introduced by Yilin Wu in his thesis, see [Wu23b,Wu23a],
associated with more general ice quivers with potential. Secondly, we also associate
(higher) relative Ginzburg algebras with n-angulated surfaces, meaning surfaces
equipped with a decomposition into n-gons. These dg-algebras are weakly relative
left n-Calabi–Yau, see Theorem 5.27. We defer the detailed introduction of these
relative Ginzburg algebras to Section 5.1. Their connection with perverse schobers
is as follows:

Theorem 5 (Theorem 5.15). Let S be a marked surface equipped with an ideal n-
angulation with dual n-valent ribbon graph T. Denote by GT the associated relative
Ginzburg algebra, see Definition 5.4. There exists a T-parametrized perverse schober
FT(k), satisfying that

D(GT) ≃ H(T,FT(k)) .

Theorem 5.15 expresses that the derived categories of relative Ginzburg algebras
of n-angulated surfaces are glued together from the derived categories of the rela-
tive Ginzburg algebras of the n-gons of the n-angulations, which describe the local
categories encoded in the perverse schober.

The perverse schober FT(k) is locally described by the spherical adjunction

f ∗ : D(k))←→ Fun(Sn−1,D(k)) :f∗ , (2)

where Fun(Sn−1,D(k)) denotes the ∞-category of D(k)-valued local systems, and
f ∗ is the pullback functor along the map f : Sn → ∗. Given an E∞-ring spectrum R,
we can thus obtain an R-linear version of this adjunction, by replacing D(k) with
the stable ∞-category of right R-modules RModR. This gives rise to an R-linear
version of the perverse schober FT(k), which we denote by FT(R). We study not only
the global sections of FT(k), but by the same means also the global sections of FT(R).

The geometric model
Fix a marked surface S with an ideal n-angulation, with dual n-valent ribbon

graph T. We develop a geometric model for a full subcategory of the ∞-category of
global sections of the perverse schober FT(R), meaning that we describe a subset of
the objects in terms of curves in S and their Homs in terms of intersections of the
curves. The case R = k thus gives a geometric model for a full subcategory of the
derived ∞-category of the relative Ginzburg algebra GT.

The base of the geometric model is formed by so-called matching curves in S\M ,
which are a class of immersed curves in S\M , where M is the set of marked points.
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These curves may either be open, with endpoints at the vertices of T or on the
boundary of S\M , or closed. Matching curves contain the class of curves referred to
in cluster theory as arcs, which describe embedded matching curves. We associate
a global section ML

γ of FT(R) to each matching datum (γ, L) in the surface, which
consists of a matching curve γ and a ’local value’ L, which describes an object in
the generic stalk of FT(R). By choosing different values of L, we can realize in the
geometric model different classes of objects. In the case R = k, these include finite,
perfect and also non-perfect GT-modules. The class of perfect modules arising from
matching data includes the direct summands of the relative Ginzburg algebra GT,
also known as the projective modules associated with the vertices of the underlying
quiver.

For a certain subclass of the matching curves, called pure matching curves, we
describe the R-linear morphism objects (i.e. derived Homs) between the ML

γ ’s in
terms of multiple types of intersections of the curves, see Theorems 5.53 and 5.54.
For non-pure matching curves and L arbitrary, the morphism objects do not, in
general, simply count intersection.

We also express equivalences between the global sections of the FT(R)’s, for
different choices of n-valent graph T, whose dual n-angulations differ by a flip of an
edge, in the geometric model via rotations of parts of the surface, see Theorem 5.68.

The derived∞-category of the non-relative Ginzburg algebra associated with the
n-angulation can be realized as a full subcategory of D(GT) consisting of those global
sections of FT(k) whose evaluation at the external edges of T vanish. Our results
for D(GT) thus restrict to a geometric model for (a full subcategory of) the derived
category of the non-relative Ginzburg algebra, and this overlaps considerably with
results from the series of papers [Qiu16, Qiu18, QZ19, IQZ20]. The setup based on
perverse schober and∞-categories allows us to arrive at these geometric models via
efficient local-to-global arguments. This enables us to substantially extend these
previous results in generality. For example, the previous geometric models were
restricted to (a subset of) perfect modules, and for n ≥ 4 to (a subset of) the finite
modules.

Section 5 contains two applications of the geometric model. The first is the
description of the extended mutation matrices of a class of cluster algebras with
coefficients associated to marked surfaces in terms of Ext-groups in D(GT), see Sec-
tion 5.6.3. The second is the description of the graded homology algebra H∗(GT)
in the case that the surface has no punctures. We show in Proposition 5.66, that
H∗(GT) is equivalent to the tensor algebra JT ⊗k k[tn−2], where JT = H0(GT) is
the Jacobian algebra and k[tn−2] the graded polynomial algebra. We will also see
that JT is always a gentle algebra, generalizing an observation from [ABCJP10].
However, if S contains punctures, the Jacobian algebra may be infinite dimensional.

In Section 6, we furthermore show that the partial geometric model for D(GT)
gives rise to a full geometric model for the associated cluster category, which arises
as a full subcategory of D(GT) (consisting of non-compact objects).
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Remarks on the relation to Fukaya categories of Lefschetz fibrations
The handling of Fukaya categories comes with many analytical and geometric

difficulties. For an efficient application of the rich intuition which Fukaya cate-
gories provide to typical representation theoretic questions, such as classifications
problems, an algebraic approach to the construction of Fukaya categories may be
desirable. The emerging theory of perverse schobers seeks to give a higher categori-
cal and algebraic approach to the construction of (some classes of) Fukaya categories
and other Fukaya-type categories.

For a typical instance where perverse schobers might be applied, consider a
Lefschetz fibration π : X → S from a suitable exact symplectic manifold X to a
surface equipped with a set of marked points M ⊂ ∂S. There should exist a perverse
schober on S, parametrized by a spanning graph of S, which can be described in
terms of the typical fiber of the fibration and the vanishing cycles at the singular
fibers. The category of global sections of the parametrized perverse schober should
describe the partially wrapped Fukaya category of X with stops which lie above M .
In case that S is a disc, the resulting theory is supposed be similar to the approach
to Fukaya categories of Lefschetz fibrations by Fukaya-Seidel categories, see [Sei08].

These expectations formed the main motivation for the perverse schober descrip-
tion of the derived category of a relative Ginzburg algebra of a triangulated surface
in terms of a perverse schober in [Chr22b]. As shown by Ivan Smith [Smi15], the
finite derived category of the corresponding non-relative Ginzburg algebra admits
an embedding into the (non-wrapped) derived Fukaya category of a Calabi-Yau 3-
fold Y , equipped with a Lefschetz fibration to the surface. The typical fiber of
the fibration is the cotangent bundle T ∗S2 of the 2-sphere; the generic stalk of
the perverse schober is hence given by its Ind-complete wrapped Fukaya category
IndW(T ∗S2) ≃ D(k[t1]). Even though the derived categories of higher Ginzburg
algebras of n-angulated surfaces have for n > 3 so far not been related to Fukaya cat-
egories, we can nevertheless exhibit algebraic versions of many of the usual features
possessed by partially wrapped Fukaya categories of Calabi-Yau n-folds equipped
with Lefschetz fibrations to surfaces with typical fiber T ∗Sn−1.

Before we return to relative Ginzburg algebras, we consider the class of derived
categories of (graded) gentle algebras, which admit their own geometric model as
shown (in the ungraded, respectively underived setting) in [OPS18, BS19]. These
derived categories are by [HKK17,LP20] equivalent to the partially wrapped Fukaya
categories of surfaces. These categories are further known as topological Fukaya
categories and can be described as the global sections of constructible (co)sheaves
on ribbon graphs embedded in the surfaces, see [DK18, DK15], which fit into the
framework of parametrized perverse schobers. For this class of categories, it is clear
how the geometric model, describing objects in terms of decorated curves, relates
to the symplectic geometry. These curves themselves simply describe Lagrangians
(half-dimensional submanifolds on which the symplectic form vanishes) inside the
surface and thus objects in the Fukaya category.

The geometric model for the derived category D(GT) of a relative Ginzburg
algebra GT does not seek to describe the objects in terms of some half-dimensional
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subspaces of some speculative Calabi-Yau n-fold Y . Instead, given a Lagrangian
U ⊂ Y whose image under the Lefschetz fibration is a curve γ in the surface, the
corresponding object should be given by ML

γ ∈ D(GT), where L ⊂ T ∗Sn−1 is the
Lagrangian given by the typical fiber of the map U → γ. Indeed, in our geometric
model, L is an object of D(k[tn−2]), which is by [Abo11] equivalent to the Ind-
complete wrapped Fukaya category of T ∗Sn−1. Two particularly interesting choices
of L are the trivial k[tn−2]-modules k, which corresponds to the Lagrangian zero-
section of T ∗Sn−1, and also k[tn−2], which corresponds to the Lagrangian fiber of the
projection T ∗Sn−1 → Sn−1. The other interesting choice L = k[t±n−2], the module of
Laurent polynomials, is a non-compact object and thus does not lie in the wrapped
Fukaya category, only in its Ind-completion.

Let us further highlight the special case that a Lagrangian U in Y intersects the
singular fibers of the Lefschetz fibration. In that case, if U maps to a curve γ, this
curve will end in a vertex of the parametrizing ribbon graph; which describe in the
case n = 3 the singular values of the Lefschetz fibration. If both endpoints of γ are
at singular values, then U is a compact Lagrangian sphere and the corresponding
object Mk

γ ∈ D(GT) is a spherical object, see Example 5.55. In this case, we thus
algebraically recover the well-known construction of Lagrangian matching cycles,
see [Sei08].

1.4 Cluster categories and topological Fukaya categories
Background on cluster categories

Cluster categories of acyclic quivers were introduced in [BMR+06] as certain orbit
categories of the bounded derived categories of the path algebras of the quivers.
Amiot [Ami09] gave a more broadly applicable construction of cluster categories.
This construction takes as input a smooth dg-algebra B which is concentrated in
positive degrees (in the homological grading convention) and satisfying that the
Jacobian algebra H0(B) is finite dimensional. Further, we ask that D(B) is weakly
left 3-Calabi-Yau. A typical choice for B would be the Ginzburg algebra of a Jacobi-
finite quiver with potential. The smoothness of B implies that the derived category
of finite dimensional (over k) modules Dfin(B) is contained in the perfect derived
category Dperf(B). We may thus form the Verdier quotient

CB = Dperf(B)/Dfin(B) (3)

and obtain a triangulated category. This category is called the generalized cluster
category of B, but also often simply referred to as the cluster category. The first
remarkable property of CB is that it is triangulated 2-Calabi-Yau, i.e.

ExtiCB(X, Y ) ≃ Ext2−i
CB

(Y,X)∗ ,

functorial in X, Y ∈ CB. The second remarkable property is that the image π(B) of
B in CB is a cluster-tilting object, meaning that

• π(B) is rigid, i.e. Ext1(π(B), π(B)) ≃ 0, and
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• Ext1(π(B), X) ≃ 0 implies that X is a finite direct sum of direct summands
of π(B), for any X ∈ CB.

Cluster-tilting objects in triangulated categories admit a well behaved theory
of mutations, see [IY08], which categorifies the mutations of clusters in the cluster
algebra. For an additive categorification of a cluster algebra, one typically asks
that the cluster-tilting objects in CB are in bijection with the clusters of the cluster
algebra.

The degree 0 homology of the endomorphism dg-algebra of π(B) is equivalent
to the Jacobian algebra H0(B). In the cases where B = G is the non-relative
Ginzburg algebra associated with a triangulated marked surface, the corresponding
Jacobian algebra is a gentle algebra. The rigid objects in the corresponding cluster
category CG are in bijection with the set of arcs in the surface and the cluster titling
objects with the set of ideal triangulations of the surface, see [BZ11]. As shown
in [ZZZ13], the dimension of the first extension group between two rigid objects (or
more generally objects corresponding to open curves) in CG is given by the number of
crossing intersections of the corresponding arcs (or open curves). These extensions
can thus be seen as a subset of the homology of the derived Homs in topological
Fukaya categories, whose dimensions are described by the numbers of crossings and
boundary intersections.

Given a (suitable) 2-Calabi-Yau triangulated category C with a cluster-tilting
object, there is an associated cluster character, see [Pal08]. A cluster character on
C with values in a commutative ring A is a function χ : ob(C) → A, on the set of
isomorphism classes of objects in C. A typical choice of A would be a cluster algebra.
The cluster character is a kind of exponential map, in the sense that χ(X⊕Y ) ≃ X ·Y
for any two X, Y ∈ C. We note that this is the main difference between an additive
categorification and another approach called monoidal categorification of cluster
algebras; in the latter the multiplication of the cluster algebra is realized in terms of
a symmetric monoidal product (instead of the direct sum). To relate with the cluster
algebra, the cluster character has to satisfy a further relation, called the cluster
multiplication formula. It states that if dimk Ext1(Y,X) = dimk Ext1(X, Y ) = 1,
and X → B → Y and Y → B′ → X are the corresponding non-split extensions,
then

χ(X ⊕ Y ) ≃ χ(B) + χ(B′) .
This allows to recover the cluster exchange relations in the cluster algebra in terms
of the mutation of cluster-tilting objects in C and the cluster character.

To summarize, an additive categorification of a cluster algebra A consists of a 2-
Calabi-Yau triangulated category whose cluster-tilting objects are in bijection with
the clusters of A and which is further equipped with a cluster character to A.

Cluster categories from relative Ginzburg algebras
We consider a marked surface S, which is assumed to have no punctures. We

choose an ideal triangulation of S with dual trivalent ribbon graph T. We have an
associated relative 3-Calabi–Yau Ginzburg algebra GT, whose derived∞-category is
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equivalent to the global sections of a T-parametrized perverse schober FT. At each
vertex of T, the perverse schober FT is described by the spherical adjunction

ϕ∗ : D(k)↔ D(k[t1]) :ϕ∗ , (4)

where k[t1] denotes the graded polynomial algebra with generator in degree 1, with
k a commutative ring, and ϕ the morphism of dg-algebras k[t1] t1 7→0−−−→ k. Note that
the adjunctions (2) and (4) are equivalent, see Proposition 5.11.

Since GT is smooth, we may formally apply to it Amiot’s quotient construction
and define the Ind-complete version of the generalized cluster category as

CS := D(GT)/ IndDfin(GT) ≃ Ind
(
Dperf(GT)/Dfin(GT)

)
.

We consider the Ind-complete version of the generalized cluster category because
of the superior formal properties of presentable ∞-categories. The surprising ob-
servation is that CS and IndDfin(GT) arise as the global sections of two perverse
subschobers Fclst

T and Fmnd
T of FT and which fit into a cofiber sequence of perverse

schobers:
Fmnd
T FT

0 Fclst
T

⌜ (5)

At the vertices of T, the perverse schober Fmnd
T is described by the spherical adjunc-

tion
D(k)←→ IndDfin(k[t1]) , (6)

where Dfin(k[t1]) denotes the derived ∞-category of finite dimensional modules,
arising from restricting ϕ∗ ⊣ ϕ∗. The perverse schober Fclst

T is instead described by
the ’quotient’ spherical adjunction

0←→ D(k[t1])/ IndDfin(k[t1]) ,

where D(k[t1])/ IndDfin(k[t1]) ≃ D(k[t±1 ]) describes the derived ∞-category of 1-
periodic chain complexes. The perverse schober Fclst

T thus has no singularities and
its global sections, which are equivalent to CS, define a version of topological Fukaya
category of S valued in D(k[t±1 ]), see also below. Further, we show that Fclst

T has
no monodromy, see Proposition 6.10, so that we may call the CS the 1-periodic
topological Fukaya category of S.

We warn the reader that contrary to the name, neither the 1-periodic topolog-
ical Fukaya categories, nor D(k[t±1 ]), are 1-periodic ∞-categories in the sense of
admitting a trivialization of the suspension functor [1] ≃ id, unless the field has
characteristic 2. Nevertheless, the suspension functor acts on objects as the iden-
tity. Furthermore, these ∞-categories are 2-periodic, meaning that [2] ≃ id. In
Section 6.4.2, we also consider (n − 2)-periodic topological Fukaya categories, for
n > 3, which describe the (n− 1)-cluster categories of marked surfaces.
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We formulate the relation between the perverse schobers FT,F
mnd
T ,Fclst

T in terms
of a notion of semiorthogonal decomposition of perverse schobers. We will see that
the spherical adjunction (6) is the monadic adjunction associated to the adjunction
monad ϕ∗ϕ

∗ of the adjunction ϕ∗ ⊣ ϕ∗. We expect the semiorthogonal decomposition
of FT to be a special case of a general principle, by which, under some assumptions
such as commutating monodromy equivalences, a perverse schober decomposes into
subschobers with monadic or trivial spherical adjunctions.

Properties of the 1-periodic topological Fukaya category
The Z-graded topological Fukaya categories of a framed or graded surface S with

spanning graph Γ arises as the global sections of a Γ-parametrized perverse schober
with generic stalk D(k) and no singularities, see [DK15, HKK17]. The framing or
grading data describes the monodromy of the perverse schober, which along any loop
is the suspension functor [i], where i ∈ Z is the winding number. Given any stable
∞-category D, we can thus consider the global sections of a Γ-perverse schober
without singularities as a D-valued version of the topological Fukaya category. If
D is k-linear and 2-periodic, e.g. D = D(k[t±1 ]), it turns out that one may further
canonically associate a topological Fukaya category to a choice of orientation of S,
see [DK18], meaning that no grading or framing datum is required.

The representation type of a D(k)-valued topological Fukaya category is tame,
its indecomposable compact object have been classified in [HKK17] in terms of
suitable curves (i.e. Lagragians) in the corresponding surface. The dimensions of
the Hom’s between two objects corresponding to two curves can be described in
terms of counts of intersections of the curves. We prove an analogue of these results
for the 1-periodic topological Fukaya category. For this, we use that the 1-periodic
topological Fukaya category CS embeds fully faithfully into the derived ∞-category
of a relative Ginzburg algebra D(GT). As explained in Section 1.3 above, for D(GT),
we have a partial geometric model in terms of matching data. Each matching datum
(γ, k[t±1 ]) gives rise to an object Mk[t±1 ]

γ ∈ CS ⊂ D(GT). We prove the following
geometrization Theorem.

Theorem 6 (Theorem 6.35). Let S be a marked surface and CS the associated 1-
periodic topological Fukaya category. Every compact object X ∈ CS splits uniquely
into the direct sum of indecomposable objects associated to matching data with local
value L = k[t±1 ].

Note that the restriction to compact objects in Theorem 6 arises from the fact
that CS is an Ind-complete category, the ’perfect’ version is the full subcategory of
compact objects.

A similar classification result for the objects in the generalized cluster categories
of non-relative Ginzburg algebras arising from triangulated surfaces without punc-
tures appears in [BZ11]. The case with punctures was treated in [AP21,QZ17]. We
take an original approach to the proof of Theorem 6.35, in that we employ general
∞-categorical techniques on the description of objects in limits of diagrams of ∞-
categories in terms of sections of the Grothendieck construction and use the gluing
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properties of the objects arising from matching curves.
Brav and Dyckerhoff use the gluing properties of relative Calabi-Yau structures

to construct relative 1-Calabi-Yau structures on D(k)-valued topological Fukaya
categories of framed surfaces. The derived ∞-category D(k[t±1 ]) of 1-periodic chain
complexes is 2-periodic and thus linear over the commutative dg-algebra k[t±2 ] of
graded Laurent polynomials with generator in degree |t2| = 2. As a k[t±2 ]-linear
∞-category, D(k[t±1 ]) is smooth and proper and admits a weak right 1-Calabi-Yau
structure. Applying the gluing results yields a relative weak right 2-Calabi-Yau
structure on the D(k[t±1 ])-valued topological Fukaya category, considered as a k[t±2 ]-
linear smooth and proper ∞-category.

Finally, we note that the results of [DK15] show that the 1-periodic topological
Fukaya category CS admits an action of the mapping class group of the surface, see
Theorem 6.11. Mapping class group actions on cluster categories of marked surfaces
seem to have not been previously constructed.

Additive categorification of cluster algebras with coefficients
Let again S be a marked surface without punctures with an auxiliary ideal tri-

angulation with dual trivalent ribbon graph T. As explained in Section 1.2, the
relative 2-Calabi–Yau structure of the 1-periodic topological Fukaya category CS
gives rise to a Frobenius exact ∞-structure on CS, whose homotopy 1-category is 2-
Calabi–Yau Frobenius extriangulated. We denote the functor of exact extensions in
CS by E. In terms of the geometric model for CS based on matching curves in S\M ,
these extensions have a very simple interpretation. Given two objects arising from
curves in S, a basis of the extensions arises from crossings and directed boundary
intersections. The extensions arising from crossings are exact extensions, whereas
the extensions arising from directed boundary intersections are not exact.

In an extriangulated category, the notions of rigid object (meaning Ext1(X,X) =
0) and cluster tilting object need to be adapted, by replacing all Ext1’s with the
functor of exact sequences E. The following Theorem is the first part of the cate-
gorification of a cluster algebra in terms of CS.

Theorem 1.3 (Corollary 6.53). There are canonical bijections between the sets of
the following objects.

• Clusters of the cluster algebra with coefficients in the boundary arcs associated
to S.

• Ideal triangulations of S.

• Cluster-tilting objects in the extriangulated category hoCS.

In Section 6.3.3, we also describe the (discrete) endomorphism algebras of the
cluster-tilting objects. They are given by finite-dimensional non-smooth gentle al-
gebras.

The notion of cluster character naturally extends to extriangulated categories.
The second part of the additive categorification of a cluster algebra in terms of CS
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is the description of a cluster character on CS with values in a the commutative
Kauffman Skein algebra Sk1

S of the surface S (with parameter q = 1). The elements
of this algebra are links in S, meaning superpositions of curves, modulo relations
such as the Kauffman Skein relation, see Definition 6.48. This algebra embeds into
the upper cluster algebra of the S with coefficients in the boundary arcs, see [Mul16].

Theorem 1.4 (Theorem 6.59). There is a cluster character χ : obj(Cc
S)→ Sk1

S with
values in the commutative Skein algebra of links in S. The character maps an object
arising from a matching curve in S\M to the matching curve considered as a link
with a single component. Furthermore, composing χ with the inclusion of Sk1

S into
the upper cluster algebra yields a cluster character to the upper cluster algebra.

The stable category of the Frobenius exact ∞-category CS, obtained as the lo-
calization at the collection of morphisms factoring through an injective projective
object, is a stable ∞-category, as is shown in [JKPW22], see also Proposition 4.49.
We conjecture that this stable ∞-category is equivalent to an enhancement of the
standard 2-Calabi-Yau triangulated cluster category arising from S, see Conjec-
ture 6.63. In the case that the non-frozen quiver arising from the triangulation is
acyclic, we apply a result of Keller-Reiten [KR08] to show that the two triangulated
homotopy categories are equivalent, see Theorem 6.64.

Finally, we wish to mention Yilin Wu’s recent approach to the categorification
of cluster algebras with coefficients called relative cluster categories and Higgs cate-
gories, see [Wu23b]. In loc. cit., a generalization of Amiot’s construction is applied to
relative Ginzburg algebras, which thus differs from the approach taken here. How-
ever, the outcome is also a Frobenius 2-Calabi-Yau extriangulated category with
cluster tilting objects, called the Higgs category. The extriangulated structure of
the Higgs category arises from the ambient triangulated category, called the gen-
eralized cluster category, in which the Higgs category lies as an extension closed
subcategory.
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2 Background from higher category theory
This thesis is formulated in the language of ∞-categories, as developed by Joyal
and Lurie. We make particular use of stable ∞-categories, which provide an en-
hancement of triangulated categories. It would in principle be possible to for-
mulate many of the results in the framework of dg-categories. One reason to
use stable ∞-categories is to gain access to the powerful framework developed
in [Lur09, Lur17, Lur18, Lur23]. A further advantage of stable ∞-categories is that
they are more general than dg-categories or A∞-categories. For some explicit com-
putations in the k-linear setting, we will nevertheless make use of dg-categorical
constructions.

While we will assume basic familiarity with the theory of ∞-categories, we use
this section to fix our notation and review some often used aspects of the theory
of ∞-categories. We further discuss in detail how to pass from a dg-category to its
stable derived∞-category. Parts of this discussion were not previously documented
in the literature, though certainly known to experts. For extensive treatments of the
theory of ∞-categories and stable ∞-categories, we refer to [Lur09,Lur17,Lur23].

Section 2.1 concerns generalities on∞-category theory. We begin by introducing
the different flavors of ∞-categories of ∞-categories in Section 2.1.1. We take a
closer look at R-linear ∞-categories, where R is an E∞-ring spectrum, in 2.1.2. In
Section 2.1.3, we discuss the computation of limits and colimits in ∞-categories of
∞-categories. In Section 2.1.4, we discuss stable ∞-categories of modules over ring
spectra and describe the relation between colimits of ring spectra and colimits of
the corresponding ∞-categories of right module spectra. Section 2.1.5 reviews the
notion of a monadic adjunctions of ∞-categories.

Section 2.2 discusses the passage from dg-categories to k-linear ∞-categories.
Section 2.2.1 begins with some generalities on dg-categories and dg-categories of
modules. Section 2.2.2 discusses different models for the derived ∞-category of a
dg-category. We discuss in the final Section 2.2.3 how the passage to the derived
∞-category of a dg-category forms a functor.

In Section 2.3, we introduce semiorthogonal decompositions of stable∞-categories
(of arbitrary length n ≥ 2). After discussing some generalities in Section 2.3.1, we
treat two sources of semiorthogonal decompositions, as well as their relation, in
Sections 2.3.2 and 2.3.3. The two sources are sequences of functors between stable
∞-categories and upper triangular dg-algebras.

2.1 ∞-category theory
2.1.1 ∞-categories of ∞-categories

We use the following notation for different∞-categories of∞-categories. We denote
by

• S the ∞-category of spaces.

• Cat∞ the ∞-category of ∞-categories.
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• St ⊂ Cat∞ the subcategory of stable ∞-categories and exact functors.

• Stidem ⊂ St the full subcategory spanned by idempotent complete stable ∞-
categories.

• PrL ⊂ Cat∞ the subcategory of presentable ∞-categories and left adjoint
functors.

• PrR ⊂ Cat∞ the subcategory of presentable ∞-categories and right adjoint
functors.

• by PrLSt ⊂ PrL and PrRSt ⊂ PrR the full subcategories consisting of stable
∞-categories.

A remarkable property of presentable ∞-categories is the adjoint functor the-
orem, see [Lur09, 5.5.2.9]. Namely, a functor F : C → D between presentable ∞-
categories admits

• a right adjoint if and only if F preserves colimits.

• a left adjoint if and only if F preserves limits and κ-filtered colimits for some
regular cardinal κ (this condition is also called being an accessible functor).

We further have the following.

Theorem 2.1 ([Lur09, 5.5.3.4]). There exists a canonical equivalence of∞-categories
PrL ≃ (PrR)op, restricting to the identity on objects and mapping each functor in
PrL to its right adjoint.

For background on adjunctions of ∞-categories, we recommend [Lur23,Cis19].
Let C be an ∞-category. An object x in an ∞-category C is called compact

if MapC(x, -) : C → S preserves filtered colimits. We denote by Cc ⊂ C the full
subcategory of compact objects. We denote by Ind(C) the Ind-completion of C. If
C is stable and idempotent complete, then C ≃ Ind(C)c.

2.1.2 Linear ∞-categories and morphism objects

For this section, we mostly follow [Lur17,HSS17].
The ∞-category PrL admits a symmetric monoidal structure, such that a com-

mutative algebra object in PrL amounts to a symmetric monoidal presentable ∞-
category C, satisfying that its tensor product - ⊗ - : C × C → C preserves colimits
in both entries, see [Lur17, Section 4.8]. An example of a commutative algebra
object in PrL is the ∞-category RModR of right module spectra over an E∞-ring
spectrum R. Note that if R = k is a commutative ring, then RModk is equivalent
as a symmetric monoidal∞-category to the (unbounded) derived∞-category D(k).
If R = S is the sphere spectrum, then RModS ≃ Sp is equivalent to the symmetric
monoidal ∞-category of spectra.
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Definition 2.2. Let R be an E∞-ring spectrum. The ∞-category LinCatR =
RModLModR(PrL) of left modules in PrL over RModR, is called the ∞-category
of R-linear ∞-categories.

As noted in [Lur18, Section D.1.5], R-linear ∞-categories in the above sense are
automatically stable.

Definition 2.3 ( [Lur17, 4.2.1.28]). Let R be an E∞-ring spectrum. Let C be
an R-linear ∞-category and let X, Y ∈ C. A morphism object is an R-module
MorC(X, Y ) ∈ RModR equipped with a map α : MorC(X, Y ) ⊗ X → Y in C such
that for every object C ∈ RModR composition with α gives rise to an equivalence
of spaces

MapRModR(C,MorC(X, Y ))→ MapRModR(C⊗X,MorC(X, Y )⊗X)→ MapC(C⊗X, Y ) .

We thus have πi MorC(X, Y ) ≃ π0 MapC(X[i], Y ) for all i ∈ Z.
We will also denote MorC(X,X) by End(X).

Remark 2.4. Morphism objects always exist and the formation of morphism objects
forms a functor

MorC(-, -) : Cop × C −→ RModR
which preserves limits in both entries, see [Lur17, 4.2.1.31].

Given a stable ∞-category C and two objects A,B ∈ C, the n-th Ext-group is
defined as

ExtnC(A,B) := π0 MapC(A,B[n]) ≃ π−n MorC(A,B) .
If C is k-linear, with k a commutative ring, MorC(A,B) ∈ RModk ≃ D(k) describes
a chain complex and ExtnC(A,B) is its (−n)-th homology group. The abelian group
ExtnC(A,B) thus inherits the structure of a (discrete) k-module. If all involved Ext-
groups are free k-modules, we denote by

χExt∗
C(A,B) =

∑
i∈Z

(−1)i rkk ExtiC(A,B)

the Euler characteristic.
The∞-category LinCatR inherits a symmetric monoidal structure, as the module

category over a commutative algebra object. We denote this monoidal product also
by ⊗. The tensor product of C,D ∈ LinCatR arises as the geometric realization
of the two-sided bar construction Bar(C,D)∗ : ∆op → PrL, given informally by the
formula Bar(C,D)n = C⊗PrL RMod⊗

PrL
n

R ⊗PrLD, where ⊗PrL denotes the symmetric
monoidal product of PrL. The ∞-category LinCatR admits an internal morphism
object:

Lemma 2.5. There is a functor

LinR(-, -) : LinCatop
R ×LinCatR −→ LinCatR
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satisfying
LinR(B,LinR(C,D)) ≃ LinR(B⊗ C,D) , (7)

functorial in B,C ∈ LinCatop
R and D ∈ LinCatR. We call LinR(C,D) the R-linear

∞-category of R-linear functors from C to D.

Proof. To construct the functor LinR(-, -), we follow [Lur17, 4.2.1.31]. Consider the
functor

MapLinCatR(-⊗ -, -) : LinCatop
R ×LinCatop

R ×LinCatR −→ S .

It is adjoint to a functor LinCatop
R ×LinCatR −→ Fun(LinCatop

R , S), and one can
show that its image lies in the full subcategory of representable presheaves. Com-
posing with the inverse of the Yoneda embedding LinCatR → Fun(LinCatop

R , S)
yields the functor LinR(-, -). By construction, we have

MapLinCatR(B⊗ C,D) ≃ MapLinCatR(B,LinR(C,D)) ,

functorial in B,C,D. It follows that

MapLinCatR(A,LinR(B,LinR(C,D))) ≃ MapLinCatR(A⊗B⊗ C,D)
≃ MapLinCatR(A,LinCatR(B⊗ C,D)) ,

functorial in A,B,C ∈ LinCatop
R and D ∈ LinCatR. Composing again with the

inverse of the Yoneda embedding shows (7), concluding the proof.

If C ∈ LinCatR is compactly assembled (i.e. a retract of a compactly generated
presentable stable ∞-category), then C is dualizable in the symmetric monoidal ∞-
category LinCatR, see [Lur18, D.7.0.7]. If C is compactly generated, the dual is given
by C∨ := Ind(Cc,op). The duality datum involves the evaluation and coevaluation
functors

evC : C∨ ⊗ C −→ RModR
and

coevC : RModR −→ C⊗ C∨ ,

satisfying the triangle identity. The evaluation functor evC restricts along

Cc,c × Cc ⊂ C∨ × C −→ C∨ ⊗ C

to the morphism object functor MorCc(-, -), see [Lur18, D.7.2.3, D.7.7.6].

Definition 2.6. Given an R-linear, compactly assembled ∞-category C, we denote
by

Y : C ≃ LinR(RModR,C) evC ◦(idC∨ ⊗(-))−−−−−−−−−→ LinR(C∨,RModR)
the R-linear Yoneda embedding, with inverse

LinR(C∨,RModR) ((-)⊗idC)◦coevC−−−−−−−−−→ LinR(RModR,C) ≃ C .
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Lemma 2.7. Let R be an E∞-ring spectrum and C an R-linear ∞-category. There
exist an equivalence of functors RMod∨

R⊗C∨ ⊗ C→ RModR

evC(C ⊗ Y, Z) ≃ evRModR(C, evC(Y, Z)) . (8)

Proof. We note that RMod∨
R ≃ RModR and thus C∨ ⊗ C ≃ RMod∨

R⊗C∨ ⊗ C. Com-
posing with this equivalence, both functors in (8) yield evC(-, -), showing their equiv-
alence.

2.1.3 Limits and colimit in ∞-categories of ∞-categories

We now recall results on how to compute

i) limits in Cat∞,

ii) limits and colimits in PrL, PrLSt and PrR, PrRSt,

iii) limits and colimits in LinCatR and

iv) limits and colimits in Stidem.

We begin with ii)-iv) and discuss i) at the end.
ii) Theorem 2.1 implies that we can exchange the computation of limits and

colimits of diagrams of presentable ∞-categories. For the computation of limits,
we can use i) (see below) and the fact that that the inclusions PLSt ⊂ PrL ⊂ Cat∞
and PrRSt ⊂ PrR ⊂ Cat∞ preserve all limits. Since the equivalence of Theorem 2.1
restricts to the full subcategories of stable ∞-categories, the inclusions PrLSt ⊂ PrL,
PrRSt ⊂ PrR also preserve colimits.

iii) The computation of limits and colimits of R-linear ∞-categories reduces
to the computation of limits and colimits in PrL, because the forgetful functor
LModLModR(PrL)→ PrL preserves all limits and colimits, see [Lur17, 4.2.3.1,4.2.3.5].

iv) The inclusion functor Stidem ⊂ Cat∞ preserves all limits. The computation
of colimits of idempotent stable ∞-categories can be related to the computation of
colimits of presentable stable∞-categories via the colimit preserving Ind-completion
functor Ind: Stidem → PrLSt.

We may thus focus on computing limits in the ∞-category Cat∞.
i) Given a diagram F : Z → Cat∞, with Z any (small) simplicial set, its limit is

given by the ∞-category of coCartesian sections of the coCartesian fibration which
is classified by F , see [Lur23, 7.4.1.9]. In the case of limits of strictly commuting
diagrams indexed by a 1-category C, there is a particularly explicit description
of the coCartesian fibration: consider a diagram D : C → Set∆ taking values in
∞-categories. Let p : Γ(D) → N(C) be the relative nerve construction of [Lur09,
3.2.5.2], where N(C) denotes the nerve of C. We call p or Γ(D) the (covariant)
Grothendieck construction of D. p is a coCartesian fibration classified by D.

The objects and morphisms in the Grothendieck construction Γ(D) can be de-
scribed as follows. The fiber of p over x ∈ N(C), i.e. the pullback ∞-category
Γ(D) ×N(C) {x}, is given by D(x). The set of objects of Γ(D) is thus the disjoint
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union of the sets of objects of the ∞-categories D(x) with x ∈ C. Given x, y ∈ C
and two objects X ∈ D(x) and Y ∈ D(y), a morphism α : X → Y in Γ(D) consists
of

• a morphism f : x→ y in C and

• a morphism D(f)(X)→ Y in D(y).

If D(f)(X) → Y is an equivalence, we call the morphism α a p-coCartesian mor-
phism and write α : X !−→ Y . If D(f) admits a right adjoint, we call the morphism
α a p-Cartesian morphism if D(f)(X)→ Y is a counit morphism of the adjunction
D(f) ⊣ radj(D(f)) and write α : X ∗−→ Y . For characterizations of p-Cartesian and
p-coCartesian morphisms in terms of lifting properties, see [Lur09, 2.4.1.1].

As mentioned above, a choice of limit of the functor of∞-categories D′ : N(C)→
Cat∞ (obtained by composing D with the localization Set∆ → Cat∞) is given by
the ∞-category of coCartesian sections of p : Γ(D) → N(C). This means the full
subcategory of the ∞-category

FunN(C)(N(C),Γ(D)) := Fun(N(C),Γ(D))×Fun(N(C),N(C)) {idN(C)} ,

spanned by coCartesian sections, i.e. those sections s : N(C)→ Γ(D) satisfying that
s(e) is a p-coCartesian morphism for each morphism e in N(C). Morphisms in the
limit of D′ are natural transformations between coCartesian sections.

In the cases of interest for us, the diagram D takes values in stable and pre-
sentable ∞-categories and limit and colimit preserving functors, which we thus as-
sume in the following. Limits and colimits in the limit of D′ can be computed in
the respective fibers of p. This can be seen as follows: the computation of limits
and colimits in the ∞-category of sections of p : Γ(D′)→ N(C) is equivalent to the
computation of p-relative limits and colimits in the ∞-category Fun(N(C),Γ(D′)).
By [Lur09, 5.1.2.3, 4.3.1.10] limits and colimits are computed pointwise in the re-
spective fibers of p. It thus suffices to note that the property of a section of p being
coCartesian is preserved under limits and colimits in the ∞-category of sections of
p, which follows from D′(α) being a limit and colimit preserving functor for each
1-simplex α of N(C).

Finally, we also introduce the following terminology used later on.

Definition 2.8. Let p : Γ(D′) → N(C) be as above. We define the support of a
morphism β : s → s′ between (not necessarily coCartesian) sections of p to be the
subset of objects x of N(C) such that β(x) : s(x)→ s′(x) is not zero.

Notation 2.9. Let p : Γ→ ∆n be an inner fibration. Given an edge e : a→ a′ in Γ
we write e : a !−→ a′ if e is a p-coCartesian edge and e : a ∗−→ a′ if e is a p-Cartesian
edge.
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2.1.4 Modules over ring spectra

Consider the symmetric monoidal∞-category Sp of spectra. Sp is a stable and pre-
sentable ∞-category. An E1-ring spectrum is an object of Alg(Sp), the ∞-category
of (coherently associative) algebra objects in Sp. For every such E1-ring spectrum
R, there is a stable and presentable ∞-category RModR of right R-modules in Sp.
As already noted above, if R can be enhanced to a commutative algebra object of
Sp, i.e. an E∞-ring spectrum, then RModR inherits the structure of a symmetric
monoidal ∞-category. In this case, we can form the ∞-category Alg(RModR) of
algebra objects in RModR. Given A ∈ Alg(RModR), we can again form the ∞-
category RModA(RModR) of right A-modules in RModR. Alternatively, we can also
consider the E1-ring spectrum ξ(A) ∈ Alg(Sp) underlying A obtained as follows. We
consider the forgetful functor RModR → Sp, mapping a right R-module to the un-
derlying spectrum. This functor extends to a functor ξ : Alg(RModR) → Alg(Sp),
which we apply to A. We can form the ∞-category of right modules RModξ(A) over
ξ(A). We will show in Corollary 2.12 that this does not yield a further ∞-category,
meaning there exists an equivalence of ∞-categories

RModA(RModR) ≃ RModξ(A) .

Let D be a stable ∞-category and consider any object X ∈ D. We can find an
E1-ring spectrum End(X) ∈ Alg(Sp), called the endomorphism algebra, with the
following properties, see [Lur17, 7.1.2.2].

• πn End(X) ≃ π0 MapD(X[n], X) for all n ∈ Z.

• The induced ring structure of π∗ End(X) is determined by the composition of
endomorphisms in the homotopy category Ho(D).

The algebra object End(X) is an endomorphism object of X in the sense of [Lur17,
Section 4.7.1] and its existence expresses the enrichment of the stable ∞-category
D in spectra.

Assuming that the stable ∞-category D is also presentable„ we call an object
X ∈ D a compact generator if

• X is compact, i.e. MapD(X, -) commutes with filtered colimits and

• an object Y ∈ D is zero if and only if MapD(X, Y [i]) ≃ ∗ for all i ∈ Z.

The importance of this notion is that if X is a compact generator, there exists an
equivalence of∞-categories D ≃ RModEnd(X), as guaranteed by the Schwede-Shipley
recognition theorem, see [Lur17, 7.1.2.1].

We now restrict to R-linear∞-categories where R is an E∞-ring spectrum. Sup-
pose that D is an R-linear∞-category andX ∈ D a compact generator. Lemma 2.10
shows we can lift End(X) along the forgetful functor ξ : Alg(RModR)→ Alg(Sp) to
an algebra object in RModR.
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Lemma 2.10. Let R be an E∞-ring spectrum. Let C be a presentable R-linear ∞-
category with a compact generator X. Then there exists an algebra object EndR(X) ∈
Alg(RModR) and an equivalence of R-linear ∞-categories

C ≃ RModEndR(X)(RModR) . (9)

The algebra object EndR(X) is mapped under the functor ξ : Alg(RModR)→ Alg(Sp)
to the endomorphism algebra End(X) ∈ Alg(Sp).

Proof. Using the left tensoring of C over RModR, we can define the R-linear functor
- ⊗R X : RModR → C. By the adjoint functor theorem, this functor admits a
right adjoint G. We denote EndR(X) := G(X) ∈ RModR. The existence of lift of
EndR(X) to Alg(RModR) and the existence of the equivalence (9) follow from [Lur17,
4.8.5.8], compare also to the proof of [Lur17, 7.1.2.1]. The right adjoint of the
composite functor

Sp -⊗R−−→ RModR
-⊗RX−−−→ C

maps X to the endomorphism object End(X). By the universal property of End(X)
and the fact that X ∈ C ≃ RModξ(EndR(X))(Sp) is a module, there exists a morphism
ξ(EndR(X)) → End(X) in Alg(Sp), which is an equivalence on underlying spectra
and thus an equivalence of E1-ring spectra.

Remark 2.11. In the setting of Lemma 2.10, the algebra object EndR(X) is an
endomorphism object of X in the ∞-category C considered as left tensored over
RModR. We call EndR(X) the R-linear endomorphism algebra of X.

Corollary 2.12. Let R be an E∞-ring spectrum and A ∈ Alg(RModR). Then there
exists an equivalence of ∞-categories

RModA(RModR) ≃ RModξ(A) , (10)

where ξ : Alg(RModR)→ Alg(Sp) denotes the forgetful functor.

Proof. The ∞-category RModA(RModR) is presentable by [Lur17, 4.2.3.7], stable
by [Lur17, 7.1.1.4] and left-tensored over RModR by [Lur17, Section 4.3.2]. Consider
the monadic adjunction -⊗A : RModR ↔ RModA(RModR) : G. The adjunction and
that G is conservative and accessible imply that A is a compact generator. The R-
linear endomorphism algebra of A ∈ RModA(RModR) is given by A ∈ Alg(RModR).
The statement thus follows from the second part of Lemma 2.10 and [Lur17, 7.1.2.1].

We conclude this section with describing the relation between colimits of algebra
objects in RModR and the colimits of the corresponding∞-categories of right mod-
ules in LinCatR. There is a functor θ : Alg(RModR)→ LinCatR that assigns to an
algebra object A ∈ Alg(RModR) the ∞-category RModA(RModR), see [Lur17, Sec-
tion 4.8.3]. The functor θ assigns to an edge ϕ : A→ B in Alg(RModR) the relative
tensor product

θ(ϕ) = -⊗A B : RModA(RModR) −→ RModB(RModR)
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using the right A-module structure on B provided by ϕ. For all ϕ : A → B, the
functor θ(ϕ) admits a right adjoint, given by pullback ϕ∗ : RModB(RModR) →
RModA(RModR) along ϕ, see [Lur17, 4.6.2.17]. The functor θ preserves colimits
indexed by contractible simplicial sets (i.e. simplicial sets whose geometric realiza-
tion is a contractible space), most notably pushouts. Corollary 2.12 shows that
RModA(RModR) ≃ RModA and we can thus employ the functor θ to describe
RModA as a colimit in LinCatR, provided a description of A as a contractible col-
imit in Alg(RModR).

2.1.5 Monadic adjunctions

Let C be an ∞-category. A monad M on C is an associative algebra object in the
monoidal∞-category End(C) = Fun(C,C) of endofunctors. In other words, a monad
is a functor M : C→ C, together with a unit u : idC →M and a multiplication map
M ◦M →M equipped with data exhibiting coherent associativity and unitality. A
main source of monads are adjunctions: given an adjunction F : C ↔ D :G of ∞-
categories, there is an associated monad M = GF , see [Lur17, Section 4.7.3], which
we call the adjunction monad. Associated to a monad M on C is its ∞-category
LModM(C) of left modules in C and the free-forget adjunction

Free : C←→ LModM(C) :Forget ,

whose adjunction monad is equivalent to M . The ∞-category LModM(C) is also
called the Eilenberg-Moore∞-category of M . For a typical example, take C = D(k)
to be the derived ∞-category of a field. If M = A ⊗k - is the monad arising
from tensoring with a dg-algebra A, then LModM(D(k)) ≃ D(A). The associated
adjunction is equivalent to the usual free-forget adjunction D(k)↔ D(A).

Given an adjunction F : C↔ D :G with monad M = GF , there is an associated
functor D→ LModM(C), making the following diagram commute:

D LModM(C)

C

G Forget

Definition 2.13. Let G : D→ C be a functor between ∞-categories.

1. The functor G is called monadic if it admits a left adjoint F with adjunction
monad M = GF and the associated functor D→ LModM(C) is an equivalence
of ∞-categories.

2. The functor G is called comonadic if the opposite functor Gop : Dop → Cop is
monadic.

If C,D are presentable ∞-categories and G preserves (sufficient) colimits, then
D → LModM(C) admits a fully faithful left adjoint, see [Lur17, Lemma 4.7.3.13].
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In this case, LModM(C) is presentable and if C and D are furthermore stable, then
LModM(C) is also stable, see [Lur17, Prop. 4.2.3.4].

To determine whether a functor is monadic, one can use the∞-categorical Barr-
Beck monadicity theorem, see [Lur17, Thm. 4.7.3.5]. Assuming that all involved
∞-categories are presentable and that the functor preserves all colimits, the theorem
reduces to the statement that a right adjoint G : D→ C is monadic if and only if it
is conservative, i.e. reflects isomorphisms. Similarly, in this setting a left adjoint F
which preserves sufficient limits is comonadic if and only if it is conservative.

2.2 From dg-categories to stable ∞-categories
2.2.1 Differential graded categories and their modules

Let k be a commutative ring. A k-linear dg-category is a 1-category enriched in the
1-category Ch(k) of chain complexes of k-modules. Given a dg-category C and two
objects x, y ∈ C, we write HomC(x, y) or Hom(x, y) for the mapping complex. We
consider dg-algebras as dg-categories with a single object.

Definition 2.14. Let A and B be k-linear dg-algebras.

• A left A-module M is a graded left module over the graded algebra underlying
A equipped with a differential dM , satisfying that

dM(a.m) = dA(a).m+ (−1)deg(a)a.dM(m)

for all a ∈ A and m ∈M .

• A right A-module M is a graded right module over the graded algebra under-
lying A equipped with a differential dM , satisfying that

dM(m.a) = dM(m).a+ (−1)deg(m)m.dA(a)

for all a ∈ A and m ∈ M . We also refer to right A-modules simply as A-
modules.

• An A-B-bimodule M is a graded bimodule over the graded algebras underlying
A and B equipped endowed with a differential dM , which exhibits M as a left
A-module and a right B-module. If A = B, we call M an A-bimodule.

Remark 2.15. Let M be an A-B-bimodule with differential dM . The shifted A-B-
bimodule M [1] can be described as follows.

• The differential is −dM .

• The left action .[1] of a ∈ A on m ∈ M [1] is given by a.[1]m = (−1)deg(a)a.m,
where a.m denotes the left action of a ∈ A on m ∈M .

• The right action .[1] of b ∈ B on m ∈M [1] is given by m.[1]b = m.b, where m.b
denotes the right action of b ∈ B on m ∈M .
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We can identify left A-modules with dg-functors A → Ch(k), right A-modules
with dg-functors Aop → Ch(k) and A-B-bimodules with dg-functors A ⊗ Bop →
Ch(k). The following definition is thus consistent with Definition 2.14.

Definition 2.16. Let C be a dg-category. We call a dg-functor Cop → Ch(k) a
right C-module. We denote by dgMod(C) the dg-category of right C-modules.

Given a dg-category C and an object x ∈ C, we denote by Enddg(x) the en-
domorphism dg-algebra with underlying chain complex given by HomC(x, x) and
algebra structure determined by the composition of morphisms in C. We denote
the mapping complex between two objects x, y ∈ C by HomC(x, y) or Hom(x, y).
Given two dg-modules x, y ∈ dgMod(C) and a morphism α : x → y, we denote
by cone(α) = x[1] ⊕ y the cone with differential d(x, y) = (−d(x), d(y) − α(x)).
Given two dg-modules x, y, the morphism complex Hom(x, y) has differential d(f) =
dy ◦ f − (−1)deg(f)f ◦ dx.

Lemma 2.17. Let C be a dg-category with finitely many objects x1, . . . , xn. Then
there exists an equivalence of dg-categories dgMod(C) ≃ dgMod(Enddg(⊕n

i=1 xi)),
where Enddg(⊕n

i=1 xi) is the endomorphism dg-algebra of ⊕n
i=1 xi in dgMod(C).

Proof. This follows directly from spelling out the datum of a right module over C
and over Enddg(⊕n

i=1 xi).

Remark 2.18. A quiver is a directed graph with finitely many directed edges,
called arrows, and finitely many vertices. A graded quiver is a quiver, where each
arrow carries a Z-label. We will say that a dg-categroy C with finitely many objects
arises from a graded quiver Q, if the set of objects of C is given by the set of
vertices of Q and the morphism complexes in C are freely generated over k by the
(allowed) composites of the graded arrows of Q. In this case, the dg-category C is
fully determined by Q and the differentials of the generators, given by the arrows of
Q. Lemma 2.17 reduces in this setting to the statement, that the dg-category C is
Morita equivalent to the path algebra of the quiver Q with differential determined
on generators as in C.

2.2.2 A model for the derived ∞-category of a dg-algebra

Let A be a k-linear dg-algebra. Starting with the dg-category dgMod(A), we can
form the 1-category dgMod(A)0, with the same objects as dgMod(A) and with
mapping sets given by the 0-cycles. This 1-category admits the projective model
structure, where the weak equivalences are given by quasi-isomorphisms and the
fibrations are given by degree-wise surjections. All objects of dgMod(A)0 are fibrant.
A description of the cofibrant objects in dgMod(A)0 can be found for example in
[BMR14], where they are called q-semi-projective objects. A right A-module M is
cofibrant if and only if

• the ungraded module ⊕i∈ZMi is a projective right module over the ungraded
algebra ⊕i∈ZAi and
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• for all acyclic right A-modules N , the mapping complex HomA(M,N) is
acyclic.

If A = k is a commutative ring, the cofibrant objects are the complexes of projective
k-modules. We denote by dgMod(A)◦ ⊂ dgMod(A) the full dg-subcategory spanned
by fibrant-cofibrant objects. We call the dg-nerve D(A) := Ndg(dgMod(A)◦) the
(unbounded) derived ∞-category of A.

Before we can further discuss the properties of D(A), we need to briefly discuss
localizations of ∞-categories.

Definition 2.19. A functor f : C → C′ between ∞-categories is a reflective local-
ization if f has a fully faithful right adjoint.

In [Lur09], localizations in the sense of Definition 2.19 are simply called local-
izations. We are however interested in a more general class of localizations, which
can be characterized by the following universal property.

Definition 2.20. Let C be an ∞-category and let W be a collection of morphisms
in C. We call an ∞-category C′ the ∞-categorical localization of C at W if there
exists a functor f : C→ C′, such that, for every ∞-category D, composition with f
induces a fully faithful functor

χ : Fun(C′,D)→ Fun(C,D) ,

whose essential image consists of those functors F : C → D for which F (α) is an
equivalence in D for all α ∈ W . In that case, we also write C′ = C[W−1].

It is shown in [Lur09, 5.2.7.12], that reflective localizations are localizations in the
sense of Definition 2.20. If the collection of morphisms W is closed under homotopy
and composition and contains all equivalences in C, we can regard C[W−1] as a
fibrant replacement of (C,W ) in the model category of marked simplicial sets, see
also the discussion in the beginning of [Lur17, Section 4.1.7].

Our first goal in this section is to prove the following analogue of [Lur17, 1.3.5.15],
which relates the derived ∞-category of A with the ∞-categorical localization of
dgMod(A)0 at the collection of quasi-isomorphisms.

Proposition 2.21. Let A be a dg-algebra and let W denote the collection of quasi-
isomorphisms. There exists an equivalence of ∞-categories

D(A) ≃ N(dgMod(A)0)[W−1] .

Given a model category C, the ∞-categorical localization of N(C) at the collec-
tion of weak equivalences is called the∞-category underlying C. We refer to [Hin16]
for general background. Proposition 2.21 thus shows that the derived ∞-category
of A is the ∞-category underlying the model category dgMod(A)0.

For the proof of Proposition 2.21 we need the following two lemmas.
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Lemma 2.22. Let A be a dg-algebra. The inclusion functor N(dgMod(A)0) →
Ndg(dgMod(A)) induces an equivalence of ∞-categories

N(dgMod(A)0)[H−1]→ Ndg(dgMod(A)) ,

where H is the collection of chain homotopy equivalences.

Proof. The proof of [Lur17, 1.3.4.5] applies verbatim.

Lemma 2.23. Let A be a dg-algebra. There exists an equivalence of ∞-categories

Ndg(dgMod(A)◦) ≃ Ndg(dgMod(A))[W−1] .

Proof. We adapt the proofs of [Lur17, 1.3.4.6, 1.3.5.12]. We show that the inclusion
functor

iop : Ndg(dgMod(A)◦)op → Ndg(dgMod(A))op

admits a left adjoint which exhibits Ndg(dgMod(A)◦)op as a reflective localization at
the collection of quasi-isomorphisms. Note that any functor is a localization if and
only if the opposite functor is a localization. We thus conclude that Ndg(dgMod(A)◦)
is equivalent as an∞-category to the localization of Ndg(dgMod(A)) at the collection
of quasi-isomorphisms.

We have to show that iop admits a left adjoint G. Further, to show that G is a
localization along the collection of quasi-isomorphisms, we need to show by [Lur09,
5.2.7.12] that any edge e : M → N in Ndg(dgMod(A))op is a quasi-isomorphism if and
only if G(e) is an equivalence. Consider a trivial fibration f : Q′ → Q in dgMod(A)
given by a cofibrant replacement and any P ∈ dgMod(A)◦. [Lur09, 5.2.7.8] shows
the existence of G, provided that the composition with f induces an equivalence of
spaces

MapNdg(dgMod(A)◦)(P,Q′)→ MapNdg(dgMod(A))(P,Q) .
We deduce this from the assertion that composition with f gives a quasi-isomorphism

α : HomdgMod(A)(P,Q′)→ HomdgMod(A)(P,Q) . (11)

The surjectivity of α follows from the lifting property of the cofibration 0→ P with
respect to trivial fibrations. The kernel of α is given by HomdgMod(A)(P, ker(f)).
Using that f is a quasi-isomorphism, we deduce that ker(f) is acyclic. The con-
tractibility of the kernel of α thus follows from property of P being cofibrant. We
can thus deduce the existence of G. We note that G is pointwise given by choosing
a cofibrant replacement. Consider an edge e : M → N in Ndg(dgMod(A))op. If e is
a quasi-isomorphism, it follows from Whitehead’s theorem for model categories that
G(e) is an equivalence. If G(e) is an equivalence, we have the following commutative
diagram in Ndg(dgMod(A)).

G(M) G(N)

M N

G(e)

e
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The vertical edges and the upper horizontal edge are quasi-isomorphisms. It follows
that e is also a quasi-isomorphism.

Proof of Proposition 2.21. By Lemmas 2.22 and 2.23, there exists an equivalence of
∞-categories (

N(dgMod(A))[H−1]
)

[W−1] ≃ D(A) .
Using that H ⊂ W , the statement follows.

Let k be a commutative ring. The symmetric monoidal structure of the 1-
category Ch(k) can be used to also endow the ∞-category D(k) with a symmetric
monoidal structure. As shown in [Lur17, 7.1.4.6] there exists an equivalence of
∞-categories

N(Alg(Ch⊗(k)))[W−1] ≃ Alg(D(k)) . (12)
The left side of (12) is the ∞-categorical localization of the nerve of the 1-category
of dg-algebras at the collection of quasi-isomorphisms. The right side of (12) is the
∞-category of algebra objects in D(k). The equivalence (12) expresses that every
dg-algebra can be considered as an algebra object in D(k) and that every algebra
object in D(k) can be obtained this way (meaning it can be rectified). Unless stated
otherwise, we will omit the identification (12) and consider dg-algebras as algebra
objects in the symmetric monoidal ∞-category D(k).

We can consider k also as an E∞-ring spectrum. The∞-category RModk of right
modules over k thus inherits a symmetric monoidal structure. The ∞-categories
D(k) and RModk are equivalent as symmetric monoidal ∞-categories, see [Lur17,
7.1.2.13].

Let A be a k-linear dg-algebra and X a cofibrant A-module. Consider the Quillen
adjunction

-⊗dg
k X : dgMod(k)↔ dgMod(A) :HomA(X, -) , (13)

between the tensor functor on the level of chain complexes and the internal Hom
functor composed with the forgetful functor dgMod(A) → dgMod(k). Given a
Quillen-adjunction between model categories, there is an associated adjunction be-
tween the underlying ∞-categories, see [MG16]. We denote the adjunction of ∞-
categories underlying the Quillen adjunction (13) by

-⊗dg
k X : D(k)↔ D(A) :RHomA(X, -) . (14)

Lemma 2.24. Let A be a k-linear dg-algebra. The ∞-category D(A) admits a
structure of a k-linear ∞-category such that for any X ∈ D(A) the functor -⊗dgk X
is k-linear.
Proof. The ∞-category D(A) is stable and presentable by [Lur17, 1.3.5.9, 1.3.5.21].
We now show that D(A) is left tensored over D(k). Note that dgMod(k)0 ≃ Ch(k)
is a symmetric monoidal model category with respect to the tensor product, which
we denote in the following by ⊗, see [Lur17, 7.1.2.11]. We further denote the Quillen
bifunctor dgMod(k)×dgMod(A)→ dgMod(A) given by the relative tensor product
by -⊗dg

k -. Recall that LM⊗ denotes the left-module∞-operad, see [Lur17, 4.2.1.7].
We define a 1-category O⊗

A as follows.
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• An object of O⊗
A consists of an object (a, . . . , a︸ ︷︷ ︸

i -many

,m, . . . ,m︸ ︷︷ ︸
j -many

) ∈ LM⊗ and objects

(x1, . . . , xi) ∈ (dgMod(k)◦)×i, (m1, . . . ,mj) ∈ (dgMod(A)◦)×j .

• For n = 1, 2, consider the object Xn of O⊗
A given by ln = (a, . . . , a︸ ︷︷ ︸

in -many

,m, . . . ,m︸ ︷︷ ︸
jn -many

) ∈

LM⊗ and

(xn1 , . . . , xnin) ∈ (dgMod(k)◦)×in , (mn
1 , . . . ,m

n
jn) ∈ (dgMod(A)◦)×jn .

A morphism X1 → X2 consists of a morphism α : l1 → l2 in LM⊗, which
we also consider as a morphism of sets α̃ : {1, . . . , i1 + j1} → {1, . . . , i2 + j2},
morphisms ⊗

e∈α̃−1(i)
a1
e → a2

i

in dgMod(k)◦ for 1 ≤ i ≤ i2 and morphisms( ⊗
e∈α̃−1(j)\ max(α̃−1(j))

a1
e

)
⊗k m1

max(α̃−1(j))−i1 → m2
j−i2

in dgMod(A)◦ for i1 + 1 ≤ j ≤ i2 + j2.

The forgetful functor N(O⊗
A) → LM⊗ is a coCartesian fibration of ∞-operads, ex-

hibiting N((dgMod(A)◦)0) as left-tensored over the symmetric monoidal∞-category
N((dgMod(k)◦)0). By the discussion following [Lur17, 4.1.7.3] and using that -⊗dg

k -
preserves weak equivalences in both entries, it follows that the left-tensoring passes
to the∞-categorical localizations at the chain homotopy equivalences, meaning that
we obtain that D(A) is left-tensored over D(k). The action of D(k) on D(A) pre-
serves colimits in both variables, as follows from the monoidal product -⊗k - being
a Quillen-bifunctor. To see that -⊗dg

k X is a k-linear functor, we need to describe an
extension of - ⊗dg

k X to a map α : N(O⊗
k ) → N(O⊗

A) of ∞-operads over LM⊗. We
leave the details of the description of a functor of 1-categories α′ : O⊗

k → O⊗
A whose

nerve N(α′) defines the desired functor α to the reader.

Proposition 2.25. Let A be a k-linear dg-algebra. Using the symmetric monoidal
equivalence D(k) ≃ RModk, we can consider RModA

(10)
≃ RModA(RModk) as left-

tensored over D(k). There exists an equivalence

D(A) ≃ RModA (15)

of ∞-categories left-tensored over D(k).

Proof. Consider the adjunction of∞-categories -⊗dg
k A : D(k)↔ D(A) :RHomA(A, -)

underlying the Quillen adjunction - ⊗dg
k A : dgMod(k) → dgMod(A) :HomA(A, -).
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Using the adjunction it can be directly checked that A is a compact generator of
D(A). It follows from [Lur17, 4.8.5.8] that there exists an equivalence

D(A) ≃ RModEndk(A)(D(k)) (16)

of∞-categories left-tensored over D(k), where Endk(A) ∈ Alg(D(k)) is the k-linear
endomorphism algebra of A, see Remark 2.11. We note that the underlying chain
complex satisfies Endk(A) ≃ RHomA(A,A) ≃ A. By the universal property of
Endk(A), there exists a morphism of dg-algebras χ : A → Endk(A), the underlying
morphism of chain complexes of which is induced by the actions A ⊗k A → A and
A⊗k Endk(A)→ A. The latter is induced by the counit of the adjunction -⊗dg

k A ⊣
RHomA(A, -) and thus equivalent to the former. It follows that χ induces a quasi-
isomorphism Endk(A) = RHomA(A,A) ≃ A on underlying chain complexes and is
hence a quasi-isomorphism of dg-algebras. In total we obtain, that there also exists
an equivalence of k-linear ∞-categories RModEndk(A)(D(k)) ≃ RModA(D(k)) ≃
RModA(RModk), which combined with (16) shows the statement.

Let A,B ∈ Alg(D(k)) be dg-algebras and F : RModA → RModB a k-linear
functor. Clearly F (A) ∈ RModB carries the structure of a right B-module. Let
m : A⊗kA→ A be the multiplication map of A. Using the k-linearity of F , we find
an action map

A⊗k F (A) ≃ F (A⊗k A) F (m)−−−→ F (A) ,
which is part of the datum of a left A-module structure on F (A). It turns out
that both module structures are compatible, so that we can endow F (A) with the
structure of an A-B-bimodule. Since observation can be turned into a functor

ϕ : Link(RModA,RModB)→ BModA B(D(k)) ,

which is shown in [Lur17, Section 4.8.4] to be an equivalence of∞-categories. Given
a bimodule M ∈ BModA B(D(k)), we denote by -⊗AM a choice of k-linear functor
satisfying that ϕ(-⊗AM) ≃M .

Proposition 2.26. Let A,B be dg-algebras and M ∈ BModA B(D(k)) ≃ D(Aop⊗kB)
and consider the functor of∞-categories -⊗dg

A M underlying the right Quillen functor
-⊗dg

A M : dgMod(A)→ dgMod(B). There exists a commutative diagram in LinCatk
as follows.

RModA RModB

D(A) D(B)

(15) ≃

-⊗AM

(15) ≃
-⊗dg
A M

(17)

Remark 2.27. As justified by Proposition 2.26, we will not distinguish in notation
between the functors -⊗AM and -⊗dg

A M in the remainder of the thesis.

Proof of Proposition 2.26. The k-linear functor

χ : RModA ≃ D(A)
-⊗dg
A M

−−−−→ D(B) ≃ RModB
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is of the form -⊗A N for N ∈ BModA B(D(k)), see [Lur17, Section 4.8.4]. We note
that N can be rectified to a strict dg-bimodule and is thus determined by its right
B-module structure and its left A-module structure. The right B-module structures
of N and M are clearly equivalent. In particular, there exists an equivalence N ≃M
of underlying chain complexes. The left action of A on N is determined by A⊗kN ≃
χ(A ⊗k A) χ(m)−−−→ χ(A) ≃ N, where m denotes the multiplication of A and is thus
equivalent to the given left action of A on the A-B-bimodule M . This shows that
N ≃M as bimodules.

Proposition 2.28. Let A be a k-linear dg-algebra and X ∈ dgMod(A) a cofibrant
A-module. The k-linear endomorphism algebra Endk(X) ∈ Alg(D(k)) of X is quasi-
isomorphic to the endomorphism dg-algebra Enddg(X) of X.

Proof. Proposition 2.26 shows that the functor

F : D(k) ≃ RModk
-⊗kX−−−→ RModA(RModk) ≃ D(A)

is equivalent to - ⊗dg
k X. The right adjoint G of F is given by RHomA(X, -). It

follows that RHomA(X,X) ≃ G(X) = Endk(X) in D(k), see also the definition of
Endk(X) in the proof of Lemma 2.10. Using that RHomA(X,X) = HomA(X,X) =
Enddg(X) and the explicit HomA(X,X)-module structure on X, it follows from the
universal property of the endomorphism object that there exists a morphism of dg-
algebras α : RHomA(X,X) → Endk(X), which restricts to the quasi-isomorphism
on underlying chain complexes and is hence an quasi-isomorphism of dg-algebras.

2.2.3 Morita theory

Let k be a commutative ring. We denote by dgCatk the category of k-linear dg-
categories. Given a dg-category C ∈ dgCatk, the dg-category dgMod(C) admits a
model structure called the projective model structure. We have already encountered
this model structure in Section 2.2.2 in the case where C is a dg-algebra. We define
Cperf as the full dg-subcategory of dgMod(C) spanned by fibrant-cofibrant objects
x which are compact in the homotopy category H0(dgMod(C)), i.e. Hom(x, -) pre-
serves coproducts. This assignment forms a functor

(-)perf : dgCatk → dgCatk .

As shown by Tabuada [Tab05], the category dgCatk admits a model structure
where

• the weak equivalences are the quasi-equivalences, that is dg-functors F : A→
B satisfying that for all a, a′ ∈ A, the morphism between morphism complexes
F (a, a′) : HomA(a, a′)→ HomB(F (a), F (a′)) is a quasi-isomorphism and such
that the induced functor on homotopy categories is an equivalence.
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• the fibrations are the dg-functors F such that for all a, a′ ∈ A, the morphism
between mapping complexes F (a, a′) : HomA(a, a′) → HomB(F (a), F (a′)) is
degreewise surjective and satisfies that for any isomorphism b→ F (a′) in the
homotopy category of B there exists a lift along F to an isomorphism a→ a′

in the homotopy category of A.

The ∞-category underlying this model category is given by the ∞-categorical
localization dgCatk[W−1] of the nerve of dgCatk at the collection W of weak equiva-
lences. This model structure can be further localized at the collection M of Morita-
equivalences, that is dg-functors F such that (F )perf is a quasi-equivalence. The
resulting model structure is called the Morita model structure. The corresponding
localization functor

L : dgCatk[W−1] −→ dgCatk[M−1]
exhibits dgCatk[M−1] as a reflective localization of dgCatk[W−1] and thus preserves
colimits. Given C ∈ dgCatk[W−1], its image L(C) is quasi-equivalent to Cperf . The
Morita model structure models the ∞-category of k-linear, stable and idempotent
complete ∞-categories, meaning that there exists an equivalence of ∞-categories

dgCatk[M−1] ≃ ModNdg(kperf)(Stidem) , (18)

see [Coh13]. The right side of (18) describes the∞-category of modules in the sym-
metric monoidal category Stidem over the algebra object Ndg(kperf). The equivalence
(18) maps a dg-category C to the dg-nerve of the dg-category Cperf . Ind-completion
provides a further colimit preserving functor Ind: ModD(k)perf (Stidem) → LinCatk.
In total we obtain the colimit preserving functor

dgCatk[W−1] L−−→ dgCatk[M−1] ≃ ModD(k)perf (Stidem) Ind−−→ LinCatk
forget−−−→ PrL ,

(19)
denoted D(-). Note that given a dg-algebra A, the derived ∞-category D(A) is
equivalent to the image of A under (19), so that the notation D(-) for the functor
(19) is justified. Furthermore, we can compute colimits in dgCatk[W−1] as homotopy
colimits in dgCatk with respect to the quasi-equivalence model structure.

2.3 Semiorthogonal decompositions
In this section we discuss semiorthogonal decompositions of stable ∞-categories of
length n ≥ 2. Some of the treatment is based on the discussion of semiorthogonal
decompositions of length n = 2 in [DKSS21].

2.3.1 Generalities

Definition 2.29. Let V and A be stable ∞-categories. We call A ⊂ V a stable
subcategory if the inclusion functor is fully faithful, exact and its image is closed
under equivalences.
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Notation 2.30. Let V be a stable ∞-category and A1, . . . ,An ⊂ V stable subcate-
gories. We denote by ⟨A1, . . . ,An⟩ the smallest stable subcategory of V containing
A1, . . . ,An.

Definition 2.31. Let V be a stable∞-category and let A1, . . . ,An be stable subcat-
egories of V. Consider the full subcategory D of Fun(∆n−1,V) spanned by diagrams
D : ∆n−1 → V satisfying the following two conditions.

• D(i) lies in ⟨An−i, . . . ,An⟩ for 0 ≤ i ≤ n− 1.

• The cofiber of D(i)→ D(i+ 1) in V lies in An−i−1 for all 0 ≤ i ≤ n− 2.

We call the ordered n-tuple (A1, . . . ,An) a semiorthogonal decomposition of V of
length n if the restriction functor D→ V to the vertex n− 1 is a trivial fibration.

Definition 2.32. Let V be a stable ∞-category and A ⊂ V a stable subcategory.
We define

• the right orthogonal A⊥ to be the full subcategory of V spanned by those
vertices x ∈ V such that for all a ∈ A the mapping space MapV(a, x) is
contractible.

• the left orthogonal ⊥A to be the full subcategory of V spanned by those vertices
x ∈ V such that for all a ∈ A the mapping space MapV(x, a) is contractible.

The next lemma shows that semiorthogonal decompositions of length n are sim-
ply repeated semiorthogonal decompositions of length 2.

Lemma 2.33. Let V be a stable ∞-category and Ai ⊂ V, for 1 ≤ i ≤ n, a stable
subcategory. (A1, . . . ,An) is a semiorthogonal decomposition of V if and only if

i) ⟨A1, . . . ,An⟩ = V and

ii) (Ai,
⊥Ai) forms a semiorthogonal decomposition of ⟨Ai, . . . ,An⟩ for all 1 ≤ i ≤

n− 1.

Proof. For 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− i− 1, denote by

Di
j ⊂ Fun(∆{j,...,n−i}, ⟨Ai, . . . ,An⟩)

the full subcategory spanned by diagrams Di
j satisfying that

• Di
j(l) lies in ⟨An−l, . . . ,An⟩ for j ≤ l ≤ n− i,

• the cofiber of Di
j(l)→ Di

j(l + 1) in V lies in An−l+1 for all j ≤ l ≤ n− i− 1.

We denote by ri,j : Di
j → ⟨Ai, . . . ,An⟩ the functor given by the restriction to the

vertex n − i. Note that for i < k ≤ n − j − 1, there is a trivial fibration Di
j →

Di
n−k ×⟨Ak,...,An⟩ D

k
j .

39



Now suppose that (A1, . . . ,An) is a semiorthogonal decomposition and let D→ V

be the corresponding trivial fibration. Condition i) is immediate. For condition ii),
we need to show that ri,n−i−1 is a trivial fibration for all 1 ≤ i ≤ n− 1. Using that
pullbacks preserve trivial fibrations, it follows that

D′ = D×V ⟨Ai, . . . ,An⟩ → ⟨Ai, . . . ,An⟩ (20)

is a trivial fibration. We can describe the elements of D′ as the left Kan extensions
along the inclusion ∆{0,...,n−i} → ∆n of elements of Di

0. It thus follows from [Lur09,
4.3.2.15] that the restriction functor D′ → Di

0 to ∆{0,...,i} is a trivial fibration.
Using that the functor (20) factors through ri,0 : Di

0 → ⟨Ai, . . . ,An⟩, it follows from
the 2/3 property of equivalences that also ri,0 is a trivial fibration. The following
commutative diagram thus shows that ri,n−i−1 is a trivial fibration. We have thus
shown statement ii).

Di
0 Di

n−i−1 ×⟨Ai+1,...,An⟩ D
i+1
0 Di

n−i−1 ⟨Ai, . . . ,An⟩

Di+1
0 ⟨Ai+1, . . . ,An⟩

triv fib

ri,0

⌟
triv fib ri,n−i−1

ri+1,0

(21)
We now show that conditions i) and ii) imply that (A1, . . . ,An) is a semiorthog-

onal decomposition of V. If n = 2, the assertion is obvious. We proceed by induction
over n. Assume that (A2, . . . ,An) is a semiorthogonal decomposition of ⟨A2, . . .An⟩,
meaning that r2,0 is a trivial fibration. To show that (A1, . . . ,An) is a semiorthog-
onal decomposition of V = ⟨A1, . . . ,An⟩, we need to show that r1,0 is also a trivial
fibration. Condition ii) implies that r1,n−2 is a trivial fibration. The diagram (21)
for i = 1 thus shows that r1,0 is also a trivial fibration.

As it turns out, the functoriality data involved in the definition of semiorthogonal
decompositions of length 2 is redundant.

Lemma 2.34. Let V be a stable ∞-category and let A,B be stable subcategories of
V. The pair (A,B) forms a semiorthogonal decomposition of length 2 of V if and
only if

1. for all a ∈ A and b ∈ B, the mapping space MapV(b, a) is contractible and

2. for every x ∈ V, there exists a fiber and cofiber sequence b→ x→ a in V with
a ∈ A and b ∈ B.

Proof. A proof is explained in [Lur18, 7.2.0.2]: conditions 1 and 2 above imply
that A and B form the isles of a t-structure on V, see Definition 1.2.1. in [Lur17].
Then [Lur17, 1.2.1.5] shows that the inclusions A ⊂ V and B ⊂ V admit adjoints.
With this, one can prove that the functor D → V from Definition 2.31 is a trivial
fibration.
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We proceed with describing the relation between semiorthgonal decompositions
and Verdier quotients.
Definition 2.35. An exact sequence of stable, presentable∞-categories consists of
a cofiber sequence in PrLSt

A C

0 B

ι

⌜

such that i is a fully faithful functor.
Remark 2.36. In the setting of Definition 2.35, the triangulated homotopy category
of B is equivalent to the triangulated Verdier quotient of C by A, see [BGT13,
Prop. 5.9]. We thus call B the Verdier quotient of C by A.

The following Lemma shows that the datum of a semiorthogonal decomposition
of a stable, presentable ∞-category is equivalent to the datum of an exact sequence
in PrLSt.
Lemma 2.37. Consider a diagram in PrLSt

A
i−→ C

π−→ B . (22)

Suppose that i and radj(π) are fully faithful. Then the diagram can be extended to
an exact sequence if and only if (radj(π)(B), i(A)) forms a semiorthogonal decom-
position of C.

Proof. Suppose that (22) is part of an exact sequence. We find that for all a ∈ A and
b ∈ B, the mapping space MapC(ι(a), radj(π)(b)) ≃ MapB(πι(a), b) ≃ MapB(0, b) is
contractible. Let c ∈ C and cuc : c → radj(π)(π(c)) be the counit. The map π(cuc)
is an equivalence by the 2/3-property and the fact that radj(π) is fully faithful. We
hence have π(fib(cuc)) ≃ 0. It follows that fib(cuc) ∈ Im(i). There thus exists an
object a ∈ A and an exact sequence a → c → radj(π) ◦ π(c) in C. We have shown
that (i(A), radj(π)(B)) forms a semiorthogonal decomposition of C.

For the converse implication, assume that (radj(π)(B), i(A)) forms a semiorthog-
onal decomposition of C. The assertion that (22) can be extended to an exact se-
quence is via the equivalence radj : PrLSt ≃ (PrRSt)op equivalent to the assertion that
there exists a pullback diagram in Cat∞ as follows:

B C

0 A

radj(π)

⌟ radj(i)

This is in turn equivalent to the assertion that radj(π) defines an equivalence be-
tween B and the full subcategory of C spanned by objects c ∈ C, satisfying that
MapC(i(a), c) is contractible for all a ∈ A. Proposition 2.2.4 from [DKSS21] shows
that this is a property of the semiorthogonal decomposition, concluding the proof
of the converse implication.
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2.3.2 Semiorthogonal decompositions from sequences of functors

A simple source of semiorthogonal decompositions are sequences of functors between
stable ∞-categories.

Lemma 2.38. Let D : ∆n−1 → Cat∞ be a diagram taking values in stable ∞-
categories, corresponding to n composable functors

A1
F1−−→ A2

F2−−→ . . .
Fn−1−−−→ An .

(1) The stable ∞-category

{A1, . . . ,An} := Fun∆n−1(∆n−1,Γ(D))

of sections of the Grothendieck construction p : Γ(D)→ ∆n−1, see Section 2.1.3,
admits a semiorthogonal decomposition (A1, . . . ,An) of length n.

(2) Let R be an E∞-ring spectrum. If each functor Fi, 1 ≤ i ≤ n − 1, is an R-
linear functor between R-linear∞-categories, then the∞-category {A1, . . . ,An}
further inherits the structure of an R-linear∞-category such that each inclusion
functor ιi : Ai → {A1, . . . ,An} is R-linear.

Proof. We begin by showing part (1). Consider the simplicial set

Z =
(
∆0 ×∆n−1

)
⨿∆{1}×∆{1,...,n−1}

(
∆1 ×∆n−2

)
⨿· · ·⨿∆{1,...,n−1}×∆{1}

(
∆n−1 ×∆0

)
.

Let D′ be the full subcategory of Fun(Z,Γ(D)) spanned by diagrams given by right
Kan extensions along the inclusion ∆n−1 ×∆0 → Z of a diagram in {A1, . . . ,An}.
By [Lur09, 4.3.2.15], the restriction functor D′ → {A1, . . .An} to ∆0 × ∆n−1 is a
trivial fibration. We can describe the elements of D′ up to equivalence as diagrams
in Γ(D) of the form

a1

a2 a2

. . . . . . . . .

an . . . an an

id

id id id

satisfying that ai ∈ Ai. The restriction functor D′ → {A1, . . . ,An} corresponds in
the above description to the restriction to the rightmost column. The ∞-category
D of Definition 2.31 can be identified with the full subcategory of Fun(∆n−1 ×
∆n−1,Γ(α)) spanned by left Kan extensions along Z → ∆n−1 × ∆n−1 of diagrams
lying in D′. It follows that the restriction functor D→ D′ is a trivial fibration and
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thus that the restriction functor D→ {A1, . . . ,An} is a trivial fibration. This shows
part (1).

We proceed with showing part (2). Consider the diagram of ∞-operads over
LM⊗

D⊗ : O⊗
1

F⊗
1−−→ O⊗

2
F⊗

2−−→ . . .
F⊗
n−1−−−→ O⊗

n

exhibiting the functors Fi as R-linear. The morphism of ∞-operad

Fun∆n−1(∆n−1,Γ(D⊗))×Fun(∆n−1,LM⊗) LM
⊗ → LM⊗

exhibits {A1, . . . ,An} as left tensored over

M := Fun∆n−1(∆n−1,Γ(D⊗))×Fun(∆n−1,LM⊗) LM
⊗ ×LM⊗ Assoc⊗ .

Let D̃⊗ : ∆n−1 → Cat∞ be the constant diagram with value LMod⊗
R. We find M to

be equivalent as a monoidal ∞-category to

Fun∆n−1(∆n−1,Γ(D̃⊗))×Fun(∆n−1,Assoc⊗) Assoc⊗ . (23)

Pulling back along the monoidal functor LMod⊗
R →M, assigning to x ∈ LMod⊗

R the
constant section in (23), we obtain a left-tensoring of {A1, . . . ,An} over LModR. To
show that the left-tensoring provides the structure of an R-linear∞-category, it suf-
fices to show that the monoidal product preserves colimits in the second entry. This
follows from the observation that colimits in {A1, . . . ,An} are computed pointwise,
i.e. the n restriction functors {A1, . . . ,An} → Ai preserve colimits.

We next discuss the notion of gluing functors of semiorthogonal decompositions
of length 2, see also [DKSS21].

Definition 2.39. Let V be a stable ∞-category with a semiorthogonal decomposi-
tion (A,B). We define a simplicial set χ(A,B) by defining an n-simplex of χ(A,B)
to correspond to the following data.

• An n-simplex j : ∆n → ∆1 of ∆1.

• An n-simplex σ : ∆n → V such that σ(∆j−1(0)) ⊂ A and σ(∆j−1(1)) ⊂ B.

We define the face and degeneracy maps to act on an n-simplex (j, σ) ∈ χ(A,B)n
componentwise.

We denote by p : χ(A,B)→ ∆1 the apparent forgetful functor.

Definition 2.40. Let V be a stable ∞-category with a semiorthogonal decomposi-
tion (A,B). We call

• (A,B) Cartesian if the functor p : χ(A,B) → ∆1 is a Cartesian fibration. In
that case, we call the functor classifying the Cartesian fibration p the right
gluing functor associated to (A,B).
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• (A,B) coCartesian if the functor p : χ(A,B)→ ∆1 is a coCartesian fibration.
In that case, we call the functor classifying the coCartesian fibration p the left
gluing functor associated to (A,B).

Lemma 2.41 ( [DKSS21]). Let V be a stable ∞-category with a semiorthogonal
decomposition (A,B).

1. If (A,B) is Cartesian, the inclusion functor A → V admits a right adjoint,
the restriction of which to B is the right gluing functor of (A,B).

2. If (A,B) is coCartesian, the inclusion functor B → V admits a left adjoint,
the restriction of which to A is the left gluing functor of (A,B).

The next proposition can be summarized as showing that Cartesian semiorthog-
onal decompositions of length 2 are fully determined by their left gluing functor and
dually that coCartesian semiorthogonal decomposition of length 2 are fully deter-
mined by their right gluing functor.

Proposition 2.42 ([DKSS21]). Let V be a stable ∞-category with a semiorthogonal
decomposition (A,B).

1. If (A,B) is Cartesian with right gluing functor G, there exists an equivalence
of ∞-categories V ≃ Fun∆1(∆1, χ(G)), where χ(G) → ∆1 is the Cartesian
fibration classified by G considered as a functor ∆1 → Cat∞.

2. If (A,B) is coCartesian with left gluing functor F , there exists an equivalence
of ∞-categories V ≃ Fun∆1(∆1,Γ(F )).

Definition 2.43. Let V be a stable∞-category and let (A1, . . . ,An) be a semiorthog-
onal decomposition of V. We call

• (A1, . . . ,An) a Cartesian semiorthogonal decomposition if each semiorthogonal
decomposition (Ai,

⊥Ai) is Cartesian. In that case, we call the right gluing
functor of (Ai,

⊥Ai) the i-th right gluing functor of (A1, . . . ,An).

• (A1, . . . ,An) a coCartesian semiorthogonal decomposition if each semiorthog-
onal decomposition (Ai,

⊥Ai) is coCartesian. If (A1, . . . ,An) is coCartesian,
we call the left gluing functor of (Ai,

⊥Ai) the i-th left gluing functor of
(A1, . . . ,An).

2.3.3 Semiorthogonal decompositions from upper triangular dg-algebras

We now introduce a dg-analogue of the constructions from Lemma 2.38: semiorthog-
onal decompositions arising from upper triangular dg-algebras concentrated on the
diagonal and upper minor diagonal.
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Definition 2.44. For 1 ≤ i ≤ n, let Ai be a dg-algebra and for 1 ≤ i ≤ n − 1 let
Mi be an Ai-Ai+1-bimodule. We denote by

A =



A1 M1 0 . . . 0 0
0 A2 M2 . . . 0 0
0 0 A3 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . An−1 Mn−1
0 0 0 . . . 0 An


be the upper triangular dg-algebra, i.e. the dg-algebra with underlying chain complex⊕

1≤i≤n
Ai ⊕

⊕
1≤i≤n−1

Mi

and multiplication · given by

ai · a′
j = δi,jaia

′
j , mi ·m′

j = 0 ,
ai ·mj = δi,jai.mj , mj · ai = δj+1,imj.ai ,

where ai ∈ Ai, a′
j ∈ Aj and mi ∈Mi,m

′
j ∈Mj and δi,j denotes the Kronecker delta.

Proposition 2.45. Let A be an upper triangular dg-algebra as in Definition 2.44.
Then the stable ∞-category D(A) admits a semiorthogonal decomposition

(D(A1), . . . ,D(An))

of length n with i-th left gluing functor -⊗Ai Mi.
Proof. The upper triangular dg-algebra A is quasi-isomorphic to the upper triangu-
lar dg-algebra obtained from cofibrantly replacing each Mi. We thus assume without
loss of generality that the Mi are cofibrant bimodules. Consider the morphisms of
dg-algebras vi : Ai → A and wi : A→ Ai, given on the underlying chain complexes
by the inclusion of the direct summand Ai and the projection to the summand Ai,
respectively. The dg-functor vi! = - ⊗dg

Ai
Ai ⊕ Mi : dgMod(Ai) → dgMod(A) and

the pullback (wi)∗ determine right A-modules vi! (Ai) and (wi)∗(Ai) with underlying
chain complexes Ai ⊕Mi, where we set Mn = 0, and Ai, respectively. The func-
tors D(vi! ) and D((wi)∗) both exhibit D(Ai) ⊂ D(A) as a stable subcategory. For
concreteness, we denote the stable subcategories obtained from D(vi! ) by D(Ai)v
and the stable subcategories obtained from D((wi)∗) by D(Ai)w. We wish to show
that (D(A1)v, . . . ,D(An)v) is a semiorthogonal decomposition of D(A). For that it
suffices to show statements i) and ii) of Lemma 2.33. To show statement ii), it suf-
fices to show conditions 1 and 2 of Lemma 2.34 for the pairs of stable subcategories
D(Ai)v, ⟨D(Ai+1)v, . . . ,D(An)v⟩ ⊂ ⟨D(Ai)v, . . . ,D(An)v⟩ for all 1 ≤ i ≤ n.

We compute for an Ai-module Ni and an Aj-modules Nj the mapping complex
to be

HomdgMod(A)(vi! (Ni), vj! (Nj)) ≃


HomdgMod(Ai)(Ni, Nj) if i = j,

HomdgMod(Aj)(Ni ⊗Ai Mi, Nj) if i+ 1 = j,

0 else.
(24)
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This shows condition 1 of Lemma 2.34.
We observe that the datum of a right dg-module N over A is equivalent to the

datum of a sequence
N1

f1−−→ N2
f2−−→ . . .

fn−1−−−→ Nn

where Ni is a right Ai ≃ Enddg((wi)∗(Ai))-module and fi ∈ Mi(Ni, Ni+1). Denote
by N≥i the submodule Ni

fi−→ . . .
fn−1−−→ Nn of N . We thus find distinguished triangles

N≥i+1 → N≥i → Ni in dgMod(A). As shown in [Fao17, Theorem 4.3.1], the image
under the dg-nerve of a distinguished triangle in a dg-category can be extended to
a fiber and cofiber sequence. We can thus express N ∈ D(A) as repeated cofibers
of modules Ni ∈ D(Ai)w ⊂ D(A) with 1 ≤ i ≤ n. A simple induction, using that
there exist distinguished triangles in dgMod(A) of the form Ni → Ni ⊗Ai vi! (Ai)→
Ni ⊗Ai Mi for 1 ≤ i ≤ n − 1 and Nn ∈ D(An)w = D(An)v, thus shows that
N ∈ ⟨D(A1)v, . . . ,D(An)v⟩. It follows that statement i) of Lemma 2.33 is fulfilled.

Consider the subalgebra A≥i of A with underlying chain complex⊕
i≤k≤n

Ak ⊕
⊕

i≤k≤n−1
Mk .

The fully faithful dg-functor dgMod(A≥i) → dgMod(A) induces a fully faithful
functor of ∞-categories ι : D(A≥i) → D(A). The above arguments show that the
essential image of ι is ⟨Ai, . . . ,An⟩ and can easily be adapted to also show condition
2 of Lemma 2.34. We have thus proven the existence of the desired semiorthogonal
decomposition of D(A).

It remains to determine the i-th left gluing functor of (D(A1)v, . . . ,D(An)v).
Consider the fully-faithful left Quillen functor

-⊗dg
Ai
Ai : dgMod(Ai)0 → dgMod(A≥i)0 .

The right adjoint is given by the Quillen functor HomdgMod (A≥i)(Ai, -), the re-
striction of which to dgMod(A≥i+1) is given by HomdgMod(A≥i+1)(Mi, -), which in
turn is left adjoint to - ⊗dg

Ai
Mi. Passing to the underlying adjunctions of ∞-

categories of the above Quillen adjunctions shows that the i-th left gluing functor
of (D(A1), . . . ,D(An)) is given by -⊗Ai Mi.
Proposition 2.46. For 1 ≤ i ≤ n, let Ai be a dg-algebra and for 1 ≤ i ≤ n − 1,
let Mi be an Ai-Ai+1-bimodule. Denote by A the upper triangular dg-algebra of
Definition 2.44. Consider the diagram α : ∆n−1 → LinCatk corresponding to

D(A1)
-⊗A1M1−−−−−→ D(A2)

-⊗A2M2−−−−−→ . . .
-⊗An−1Mn−1
−−−−−−−−→ D(An) .

Then there exists an equivalence of ∞-categories
D(A) ≃ {D(A1), . . . ,D(An)}

such that for all 1 ≤ i ≤ n, the following diagram commutes.

D(Ai)

D(A) {D(A1), . . . ,D(An)}

D(vi! )[n−i] ιi

≃

(25)
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Proof. The stable∞-categories {D(A1), . . . ,D(An)} and D(A) admit semiorthogo-
nal decompositions (D(A1), . . . ,D(An)) with equivalent left gluing functors. It thus
follows from a repeated application of Proposition 2.42 that there exists an equiv-
alence of ∞-categories D(A) ≃ {D(A1), . . . ,D(An)}. The observation that (25)
commutes, reduces to the fact that the equivalences of Proposition 2.42 commute
with the inclusion functors of the components of the semiorthogonal decomposition,
up to delooping.
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3 Perverse schobers on surfaces
We begin in Section 3.1 with an introductory treatment of perverse sheaves on
surfaces. The main insight will be that perverse sheaves can be described in terms
of constructible (co)sheaves of sections with support on a spanning ribbon graph of
the surface. This perspective on perverse sheaves will be the starting point for their
categorification, which is split into two parts in Sections 3.2 and 3.3. In Section 3.2,
we discuss the local aspects of the categorification. Section 3.3 concerns the global
aspects of the categorification and various features of the arising notion of perverse
schobers, including their behavior under contractions of the graph and how to define
the monodromy of perverse schobers.

3.1 Background on perverse sheaves
The goal of this section is to give an introductory treatment of the notion of a
constructible sheaf on a graph and the relation with perverse sheaves on surfaces.
We begin in Section 3.1.1 by discussing the general setup, involving marked surfaces
with spanning ribbon graphs. In Section 3.1.2, we explain how constructible sheaves
on graphs can be encoded via the exit path category and how they allow to facilitate
the computation of relative cohomology groups of surfaces. In the final Section 3.1.3,
we explain the relation between perverse sheaves on surfaces with boundary and
constructible (co)sheaves on ribbon graphs.

3.1.1 Marked surfaces and spanning graphs

Definition 3.1. By a surface S, we mean a smooth, oriented and connected 2-
dimensional manifold with possibly empty boundary ∂S. The interior of S is denoted
by S◦.

A marked surface is a compact surface S together with a finite collection of
marked points M ⊂ S. We further require that each boundary component of S
contains at least one marked point and if ∂S = ∅, that M ̸= ∅. Note that all
boundary components of marked surfaces are circles.

Marked points split into two sets: boundary marked points are elements ofM∩∂S
and interior marked points are elements of M ∩ S◦. Interior marked points are also
called punctures. We denote the set of punctures by P .

All marked surfaces surfaces are obtained from starting with a closed oriented
surface of some genus by removing k ≥ 1 open discs and adding marked points to
the k boundary circles and possibly adding punctures.

Definition 3.2.

• A graph Γ consists of two finite sets Γ0 of vertices and HΓ of halfedges (often
simply denoted H) together with an involution τ : H→ H and a map σ : H→
Γ0.

48



• Let Γ be a graph. We denote by Γ1 the set of orbits of τ . The elements of
Γ1 are called the edges of Γ. An edge is called internal if the orbit contains
two elements and called external if the orbit contains a single element. An
internal edge is called a loop at v ∈ Γ0 if it consists of two halfedges both
being mapped under σ to v. We denote the set of internal edges of Γ by Γ◦

1
and the set of external edges by Γ∂1 .

• A ribbon graph consists of a graph Γ together with a choice of a cyclic order
on the set H(v) of halfedges incident to v for each v ∈ Γ0.

Definition 3.3. Let Γ be a graph. We denote by Exit(Γ) the 1-category with

• the set of elements Γ0 ⨿ Γ1 and

• all non-identity morphisms of the form v → e with v ∈ Γ0 a vertex and e ∈ Γ1
an edge incident to v. If e is a loop at v, then there are two morphisms v → e.

We call Exit(Γ) the exit path category of Γ. We will not distinguish in notation
between Exit(Γ) from its nerve N(Exit(Γ)) ∈ Set∆.

Given a graph Γ, we obtain its geometric realization |Γ| by taking the geometric
realization of the simplicial set Exit(Γ). We will only consider connected graphs,
i.e. graphs whose geometric realization is connected.

Remark 3.4. Let Γ be a graph and S an oriented surface. Any embedding of
|Γ| into S determines a ribbon graph structure on Γ, where the cyclic order of the
halfedges at any vertex is so that the cyclic order in the geometric realization is
counter-clockwise with respect to the orientation of S.

Notation 3.5. We use a graphical notation for ribbon graphs. We denote the
vertices by ×, or sometimes by · if we think of them as a non-singular point, and
edges by a straight line. We sometimes denote external edges as follows.

·

Example 3.6. The following diagram

·

· ·

denotes a ribbon graph Γ with three vertices, four edges in total, one external edge
and one loop and the cyclic order of the halfedges at each vertex going in the counter-
clockwise direction. The exit path category of Γ can be depicted as follows, with
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v, v′, v′′ denoting the vertices of Γ and e, e′, e′′, e′′′ denoting the edges of Γ.

Exit(Γ) =

v

e

e′′′ v′′ e′′ v′ e′

Definition 3.7. Let S be a marked surface and Γ a graph together with an embed-
ding i : |Γ| ⊂ S\M . Then Γ is called a spanning graph of S if

• i is a homotopy equivalence,

• i : i−1(∂S\M)→ ∂S\M is a homotopy equivalence and

• each puncture is a vertex of Γ.

We consider spanning graphs as ribbon graphs with the induced ribbon graph struc-
ture, see Remark 3.4.

Remark 3.8. Every marked surface admits a spanning graph.

3.1.2 Constructible sheaves on graphs and cohomology

Recall the following statement, of which there exist multiple variations, see [Lur17,
A.9.3], [Tan19, Rem 8.6.4] and [PT22].

Theorem 3.9. Let X be a sufficiently nice conically stratified space and D a com-
pactly generated ∞-category. Denote by Shvc(X,D) the ∞-category of D-valued
constructible sheaves on X. There exists a simplicial set Exit(X), called the ∞-
category of exit paths on X, together with an equivalence of ∞-categories

Shvc(X,D) ≃ Fun(Exit(X),D) .

In the special case that X = Γ describes a graph, the exit path category Exit(Γ)
is equivalent, as a simplicial set, to the ∞-category of exit paths. This justifies (for
compactly generated D) the following definition:

Definition 3.10. Let Γ be a graph. A constructible sheaf on Γ with values in an
∞-category D is a functor Exit(Γ)→ D.

Definition 3.11. Let F : Γ → D be a constructible sheaf with values in D and
assume that D admits finite limits. The global sections H(Γ;F ) ∈ D of F are
defined as the limit of F .
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We proceed with explaining the relation between global sections of constructible
sheaves on graphs and relative cohomology groups of surfaces. Consider for this
a marked surface S without punctures, together with a choice of spanning graph
Γ. Let L be a local system of finite dimensional vector spaces on S, i.e. a locally
constant sheaf. We observe that M ⊂ S\Γ is a homotopy equivalence. We thus
have

H∗(S,M ;L) ≃ H∗(S,S\Γ;L) , (26)
where we denote by H∗(-, -;L) the relative sheaf cohomology of L.

For all i ∈ N, we denote by H i
Γ(L) ∈ Shvc(Vectk) the constructible sheaf of

k-vector spaces on Γ, whose value on an open set W ⊂ Γ is given by the following
colimit over all open U ⊂ S with W ⊂ U .

H i
Γ(L)(W ) := colimU H

i(U,U\Γ;L)

The sheaves H∗
Γ(L) compute the (derived) sections of L with support on Γ.

Proposition 3.12. For all i ∈ Z, there exists an isomorphism

H(Γ;H i
Γ(L)) ≃ H i(S,M ;L) .

Furthermore, these cohomology groups vanish for i ̸= 1.

Proposition 3.12 expresses, that the relative cohomology with coefficients in L
arise from gluing the local sections of L with support on Γ, as encoded by the
constructible sheaf H∗

Γ(L). The fact that relative cohomology H∗(S,M ;L) is con-
centrated in the single degree i = 1 is an instance of so-called purity. The proposition
can be proven by using (26) and gluing, i.e. by using Mayer-Vietoris sequences for
the involved cohomology groups.

Example 3.13. Let S be the n-gon and consider the spanning graph Γ depicted
below, consisting of a single vertex with n incident external edges.

p

v. . . U

Let L = k be the constant local system with value k. We compute the stalks of
H i

Γ(L):
Let p be a point on an edge of Γ and U a sufficiently small neighborhood. Then

there is an exact sequence:

0→ H0
Γ(L)(U ∩ Γ) ↪→ H0(U ;L︸ ︷︷ ︸

≃k

)→ H0(U\Γ︸ ︷︷ ︸
≃∗⨿∗

;L)

︸ ︷︷ ︸
≃k⊕2

→ H1
Γ(L)(U ∩ Γ)→ 0→ . . .
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The stalk at p is thus given by H1
Γ(L)p ≃ k and H i

Γ(L)p ≃ 0 for i ̸= 1.
Let v be the n-valent vertex of Γ. Again applying the long exact sequence, a

very similar computation shows that the stalk at v is given by H1
Γ(L)v ≃ k⊕n−1 and

H i
Γ(L)v ≃ 0 for i ̸= 1.

The reader will readily verify that the stalk at v

H1
Γ(L)v ≃ H1

Γ(L)(Γ) ≃ H1(S,M ; k) ≃ k⊕n−1

computes the relative first cohomology of the pair (S,M).

3.1.3 Perverse sheaves on surfaces

In this section, we explain how the discussion from Section 3.1.2 generalized from
coefficients in local systems to coefficients in a perverse sheaf. We will further
see how much information about the perverse sheaf is captured by the associated
constructible sheaf on the graph Γ. We fix a marked surface S, allowing punctures,
together with a spanning graph Γ.
Definition 3.14. Denote by Shvk(S) the abelian category of Vectfin

k -valued sheaves
on S. Let F ∈ Db(Shvk(S)). F is called a perverse sheaf with singularities at most
at P if it satisfies the following.

• Let i : S\P ↪→ S. We have H i(i∗F ) = H i(F |S\P ) = 0 for i ̸= 0 and H0(F )|S\P
is a local system. Note that this implies H i(i!F ) ≃ 0 for i ̸= 2.

• Let p ∈ P be a puncture and jp : {p} ↪→ S the inclusion. Then H i(j!
p(F )) = 0

for i > 2 and H i(j∗
p(F )) = H i(F |p) = 0 for i < 0.

One can show that H i(F ) = 0 for all i ̸= 0, 1.
Perverse sheaves on S with singularities at most at P form an abelian category

denoted Perv(S), containing the abelian category of local systems as a full subcat-
egory. Clearly Perv(S) does not depend on the boundary marked points of S, but
only on the punctures.

Let j : |Γ| ↪→ S be the inclusion of the spanning graph Γ. Given a perverse sheaf
F on S, the complex of sheaves j!(F ) ∈ Db(Shvk(Γ)) describes derived sections
of F with support on Γ. Remarkably, this complex is again pure, meaning that
H i(j!F ) = 0 for i ̸= 1 and H1(j!F ) is a constructible sheaf of vector spaces on Γ.
For a proof, see [KS16, Prop. 3.2]. This generalizes our previous construction for a
local system L, since H1(j!(F )) ≃ H1

Γ(L). We encode H1(j!F ) as a functor, denoted
H1

Γ(F ) : Exit(Γ)→ Vectfin
k . We call the global sections of H1

Γ(F ) the cohomology of
S with support on Γ with coefficients in the perverse sheaf F .

The following theorems explain how much information about F is encoded by
the constructible sheaf H1

Γ(F ).
Theorem 3.15 ( [GGM85]). Let D be the once-punctured 1-gon. Let A1 be the
abelian category of diagrams of finite dimensional vector spaces

V 1 N
r

s
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satisfying that sr − idN and rs− idV 1 are invertible.
Let Γ1 be the graph depicted on the left in Figure 1, also called the 1-spider.

There is an equivalence of categories:

Perv(D) −→ A1

F 7−→ H1
Γ1(F )(v) H1

Γ1(F )(e)
res

δ

Here res = H1
Γ(F )(v → e) is the restriction map. Let i : {x} ↪→ D be the inclusion

of a point x ∈ ∂D\Γ. Then

δ : H1
Γ(F )(e) ≃ H1(i∗i∗F )(D)→ H0(j!j

!F )(D) ≃ H1
Γ(F )(v)

is the connecting homomorphism arising from the distinguished triangle j!j
!(F ) →

F → i∗i
∗(F ).

V 1 is called the vector space of vanishing cycles and N is called the vector space
of nearby cycles.

Γ1
v

e

Γn
v e1

e2

en

. . .

Figure 1: On the left: the once-punctured 1-gon with a spanning graph. On the
right: the once-punctured n-gon with a spanning graph with n ≥ 2.

Theorem 3.16 ([KS16]). Let D be the once-punctured n-gon with n ≥ 2. Let An

be the abelian category whose objects correspond to diagrams of finite dimensional
vector spaces (

V n Ni

ri

si

)
1≤i≤n

satisfying that ri ◦ si = idNi, ri ◦ si+1 is invertible (with i modulo n) and ri ◦ sj = 0
else.

Let Γn be the graph on the right in Figure 1, also called the n-spider. There is
an equivalence of categories:

Perv(D) −→ An

F 7−→
(
H1

Γn(F )(v) H1
Γn(F )(ei)

res

δ

)
1≤i≤n
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Using that being perverse is a local condition, Theorems 3.15 and 3.16 combine
to the following:

Theorem 3.17 ([KS16, Theorem 3.6]). Let S be a marked surface with spanning
graph Γ. Then Perv(S) is equivalent to the abelian category of diagrams

Exit(Γ)⨿ob(Exit(Γ)) Exit(Γ)op → Vectfin
k

which restrict at each vertex of Γ and its incident halfedges to a diagram of the form
described in Theorems 3.15 and 3.16.

Given a perverse sheaf F , the functor X : Exit(Γ)⨿ob(Exit(Γ)) Exit(Γ)op → Vectfin
k

can be described as follows: the restriction X|Exit(Γ) is given by the constructible
sheaf H1

Γ(F ) of sections of F with support on Γ. The other restriction X|Exit(Γ)op is
given by the constructible cosheaf H−1

Γ (D(F ))∗, where D(F ) denotes the Verdier dual
of F and (-)∗ denotes the passage to dual vector spaces, which turns constructible
sheaves into constructible cosheaves. A perverse sheaf on S may thus be encoded in
terms of a constructible sheaf on Γ and a constructible cosheaf on Γ, whose (co)stalks
are pointwise identified.

3.2 Parametrized perverse schobers locally
We have seen in Section 3.1.3 a description of the category of perverse sheaves on
a marked surface in terms of certain diagrams of finite dimensional vector spaces,
i.e. linear algebra data. While it is currently unclear how to categorify constructible
sheaves and thus perverse sheaves directly, the remarkable idea of [KS14] is to cat-
egorify perverse sheaves using such linear algebra descriptions, when available. The
goal of this section is to describe such an ad-hoc categorification of perverse sheaves
on the disc in terms of categorifications of the linear algebra data from Theorem 3.16.
This will give us the local understanding needed in Section 3.3 for the global defini-
tion of categorified perverse sheaves on arbitrary marked surfaces.

In Section 3.2.1, we discuss the ad-hoc categorification of the data from Theo-
rem 3.16. This categorification can be realized using Dyckerhoff’s categorified Dold-
Kan nerve [Dyc21] applied to a spherical functor. As noted in loc. cit. , the categori-
fication of the local description of perverse sheaves was one of the motivations for
the categorified Dold-Kan correspondence. In Section 3.2.2, we consider the action
of the local rotational symmetry of n-gons on the categorified perverse sheaves and
relate this with the paracyclic structure on the categorified Dold-Kan nerve.

3.2.1 An ad-hoc categorification

We begin with briefly recalling the concept of a spherical adjunction. Consider an
adjunction of stable∞-categories F : V↔ N :G. We associate with this adjunction
the following endofunctors.

• The twist functor TV is defined as the cofiber in the stable∞-category Fun(V,V)
of the unit map idV → GF of the adjunction F ⊣ G.
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• The cotwist functor TN is defined as the fiber in the stable∞-category Fun(N,N)
of the counit map FG→ idN of the adjunction F ⊣ G.

The adjunction F ⊣ G is called spherical if the functors TV and TN are equivalences.
In this case, the functor F is also called a spherical functor. A spherical functor
F admits repeated left and right adjoints, each given by the composite of F or G
with a power of the twist or cotwist functor. The notion of a spherical functor was
introduced in the setting of dg-categories in [AL17]. For a treatment of spherical
adjunctions in the setting of stable∞-categories, we refer to [DKSS21] and [Chr22d].

Spherical adjunction provide an ad-hoc categorification of the description of per-
verse sheaves from Theorem 3.15 in terms of sections with support on the 1-spider
Γ1. We categorify Theorem 3.16 as follows:
Definition 3.18.

(1) A perverse schober parametrized by the 1-spider, or on the 1-spider for short,
consists of a spherical adjunction

F : V←→ N :G .

Note that V categorifies the vector space of vanishing cycles and N the vector
space of nearby cycles. Accordingly, we will call V the ∞-category of vanishing
cycles and N the ∞-category of nearby cycles.

(2) Let n ≥ 2. A collection of adjunctions

(Fi : Vn ←→ Ni :Gi)i∈Z/n

between stable ∞-categories is called a perverse schober parametrized by the
n-spider, or a perverse schober on the n-spider for short, if

(a) Gi is fully faithful, i.e. FiGi ≃ idNi via the counit,
(b) Fi ◦Gi+1 is an equivalence of ∞-categories,
(c) Fi ◦Gj ≃ 0 if j ̸= i, i+ 1,
(d) Gi admits a right adjoint radj(Gi) and Fi admits a left adjoint ladj(Fi) and
(e) fib(radj(Gi+1)) = fib(Fi) as full subcategories of Vn.

We say that a collection of functors (Fi : Vn → Ni)i∈Z/n determines a perverse
schober on the n-spider if there exist adjunctions (Fi ⊣ radj(Fi))i∈Z/n which
define a perverse schober on the n-spider. Note that the collection of functors
Fi, i ∈ Z/n, can also be expressed as a functor Exit(Γn)→ St.

Remark 3.19. Given a perverse schober on the n-spider, we can pass to the
Grothendieck group K0 to obtain data as in Theorem 3.15 or Theorem 3.16, de-
termining a perverse sheaf of C. The fact that upon categorification, the sheaf and
cosheaf parts become adjoint to each other leads to an identification of this perverse
sheaf with its Verdier dual, see also the discussion in [KS16]. Such perverse sheaves
are also called polarized. One might thus more accurately regard perverse schobers
as categorified polarized perverse sheaves.
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Remark 3.20. We note that condition (e) of part (2) of Definition 3.18 is equivalent
to the condition that Im(Gi+1) = Im(ladj(Fi)). Since Gi+1 and ladj(Fi) are fully
faithful, it follows that ladj(Fi) differs fromGi+1 by composition with the equivalence
(Gi+1)−1 ◦ ladj(Fi) : Ni ≃ Ni+1.

Parts 1.-3. of part (2) of Definition 3.18 should be considered as categorifications
of the conditions of Theorem 3.16. We proceed by justifying parts 4. and 5., by
showing that the datum of a perverse schober on the n-spider is equivalent to the
datum of a perverse schober on the 1-spider.

Before that, we illustrate the special case n = 2. In this case, the∞-category V2

admits a 4-periodic semiorthogonal decomposition (V1,N), which implies that the
gluing functor N→ V1 is spherical, giving rise to the corresponding perverse schober
on the 1-spider. We refer to [HLS16,DKSS21] for background on the relation between
4-periodic semiorthogonal decompositions and spherical functors. The two fully
faithful functors N ≃ Ni

Gi−→ V2, i = 1, 2, describe the inclusion of the component N
of the semiorthogonal decomposition and the inclusion of a component of a mutated
semiorthogonal decomposition.

Proposition 3.21. Let n ≥ 2. Given a perverse schober on the n-spider

(Fi : Vn ←→ Ni :Gi)i∈Z/n

and an integer 1 ≤ j ≤ n, the collection of functors

(Fi|fib(Fj) : fib(Fj) −→ Ni)j ̸=i∈Z/n (27)

determines a perverse schober on the (n− 1)-spider.

Proof. We begin with the case n ≥ 3. We describe the right adjoints of the functors
Fi|fib(Fj). For j ̸= i, i + 1, we have Fi ◦ Gj ≃ 0. For j ̸= i, i + 1, the functor Gj,
factors through fib(Fi) ⊂ Vn and remains right adjoint to Fj|fib(Fi).

The adjunction counit defines a natural transformation η : GjFjGj+1 → Gj+1,
which becomes an equivalence after composition with Fj. The image of the cofiber
cof(η) of η is hence contained in fib(Fj). The left adjoint of cof(η) is given by the
fiber of a natural transformation Fj+1 → Fj+1 ladj(Fj)Fj, which restricts on fib(Fj)
to Fj+1. We have thus shown that

Fj+1|fib(Fj) : fib(Fj)←→ Nj+1 : cof(η)

forms an adjunction.
With the above, one readily verifies that the collection of functors (27) and their

right adjoints satisfy the conditions of Definition 3.18.
We proceed with the case n = 2. Using the adjunctions F1 ⊣ G1 and F2 ⊣ G2, it

is easy to see that there are semiorthogonal decompositions

(Im(Gi), fib(Fi)), (fib(radj(Gi)), Im(Gi))
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for i = 1, 2. The condition fib(radj(Gi+1) = fib(Fi) is equivalent to the 4-periodicity
of these semiorthogonal decompositions, in the sense of [HLS16,DKSS21]. It follows
from [DKSS21, Prop. 2.5.12] that the gluing functor of (fib(radj(Gi)), Im(Gi)), given
by the restriction of Fi to fib(radj(Gi)) = fib(Fi−1), is a spherical functor.

Proposition 3.21 describes how one can pass from perverse schobers on the n-
spider to perverse schobers on the 1-spider, i.e. spherical adjunctions. The converse
construction assigns a perverse schober on the n-spider to a spherical adjunction,
plus a choice of total order of the a priori cyclically ordered edges of the n-spider.
This constructed is based on Dyckerhoff’s categorified Dold-Kan correspondence
[Dyc21]. We begin with briefly summarizing the statement of the categorified Dold-
Kan correspondence.

A 2-simplicial stable ∞-category is an (∞, 2)-functor ∆(op,-) → St, from the 2-
categorical version of the simplex category to the (∞, 2)-version St of the∞-category
St of stable∞-categories. The categorified Dold-Kan correspondence of [Dyc21] is an
adjoint equivalence between the ∞-category of bounded below complexes of stable
∞-categories and the ∞-category of 2-simplicial stable ∞-categories. The right
adjoint is called the categorified Dold-Kan nerve N . The categorified Dold-Kan
nerve N generalizes the well known construction from algebraic K-theory called the
Waldhausen S•-construction. More precisely, given a complex of stable∞-categories
concentrated in degrees 0, 1, the categorified Dold-Kan nerve recovers Waldhausen’s
relative S•-construction. We refer to [Dyc21] for further details.

Let now F : V ↔ N :G be a spherical adjunction. We consider the spherical
functor G : V → N as a complex of stable ∞-categories concentrated in degrees
0, 1, denoted G[0]. We further denote by N[1] the complex concentrated in degree 1
with value N. Consider the morphism between bounded below complexes of stable
∞-categories G[0]→ N[1] depicted as follows.

V N 0 . . .

0 N 0 . . .

G

idB

Applying the categorified Dold-Kan nerve N , we obtain a morphism ϕ∗ : N (G[0])∗ →
N (N[1])∗ between the simplicial objects in St underlying the 2-simplicial objects in
St. Spelling out the definition of the categorified Dold-Kan nerve and the properties
of Kan extensions, see for instance [Lur09, 4.3.2.15], we obtain the following.

Lemma 3.22. Let F : V ↔ N :G be a spherical adjunction and N (G[0])∗ and
N (N[1])∗ as above. There exist the following equivalences between ∞-categories.

1. N (G[0])0 ≃ V.

2. N (G[0])n ≃ {V,N, . . . ,N} is, for n ≥ 1, equivalent to the ∞-category of
sections of the diagram ∆n−1 → St corresponding to the following sequence of
n functors

V
F−−→ N

id−−→ N
id−−→ . . .

id−−→ N ,
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see also Lemma 2.38 for the notation.

3. N (N[1])1 ≃ N.

Notation 3.23. Let F : V↔ N :G be a spherical adjunction. We denote

• V1
F = V.

• VnF = {V,N, . . . ,N︸ ︷︷ ︸
n−1-many

} for n ≥ 2.

Assume that n ≥ 2. A choice of categorification of the first restriction map
r1 : V n → N1 in Theorem 3.16 is the functor

ϱ1 : VnF ≃N (G[0])n−1
d0−→N (G[0])n−2

d0−→ . . .
d0−→N (G[0])1

ϕ1−→N (N[1])1 ≃ N

obtained from composing ϕ1 with repeated 0th face maps of the simplicial structure
of N (G[0])∗. The functor ϱ1 can equivalently be described as the projection functor
πn to the n-th component of the semiorthogonal decomposition (V1

F ,N, . . . ,N) of
length n of VnF . If n = 1, we categorify the restriction map r1 simply by F : V1

F → N.
To obtain categorification of the further restriction maps, we consider the functors
contained in the sequence of adjunctions

ς1T
−1
N [1− n] ⊣ ϱn ⊣ ςn ⊣ ϱn−1 ⊣ · · · ⊣ ς2 ⊣ ϱ1 ⊣ ς1 , (28)

where ϱ1 is as above, ςi categorifies si and ϱi categorifies ri, and TN denotes the
cotwist functor of F ⊣ G. Explicitly, the functors can be described as follows:

Lemma 3.24. Let F ⊣ G be as above and n ≥ 1. Consider the following functors
ϱi : VnF → N and ςi : N→ VnF for 1 ≤ i ≤ n.

1. If n = 1, we set ϱ1 = F and ς1 = G.

2. If n ≥ 2, we set

ϱi =


πn for i = 1,
fibn−i,n−i+1[i− 1] for 2 ≤ i ≤ n− 1,
rfib1,2[n− 1] for i = n.

The functor rfib1,2 denotes the composition of the projection functor to the
first two components of the semiorthogonal decomposition with the relative fiber
functor that assigns to a vertex a→ b ∈ {V,N} the vertex fib(F (a)→ b) ∈ N.
The functor fibi−1,i[n− i] denotes the composition of the projection functor to
the (i− 1)-th and i-th component with the fiber functor.

3. If n ≥ 2, we set ς1 to be the functor that assigns to b ∈ N the object

G(b) ∗−→ b
id−→ . . .

id−→ b ∈ VnF ,
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see also Notation 2.9, and set for 2 ≤ i ≤ n

ςi = (ιN)n−i+2[−i+ 2] ,

where (ιN)j is the inclusion of the j-th component of the semiorthogonal de-
composition.

These functors form the sequence of adjunctions (28).

Proof. The adjunctions ϱi ⊣ ςi for 1 ≤ i ≤ n and ςj ⊣ ϱj−1 for 2 ≤ j ≤ n are
straightforward to show. The final adjunction ς1T

−1
N [1 − n] ⊣ ϱn is shown in the

proof of Lemma 3.31 below.

We have indeed constructed a perverse schober on the n-spider starting with a
spherical adjunction F ⊣ G:

Proposition 3.25. The collection of adjunctions

(ϱi : VnF ←→ N : ςi)i∈Z/nZ

defines a perverse schober on the n-spider. We denote by Fn(F ) : Exit(Γn) → St
the corresponding functor.

Proof. Inspecting Lemma 3.24, parts 1. to 3. of Definition 3.18 are immediate. Parts
4. and 5. follow from the sequence of adjunctions (28).

The next proposition shows that every perverse schober on the n-spider is equiv-
alent, in the appropriate sense, to a perverse schober of the type described in Propo-
sition 3.25.

Proposition 3.26. Let
(Fi : Vn ←→ Ni :Gi)i∈Z/n

be a perverse schober on the n-spider Γn and consider the corresponding functor
F : Exit(Γn) → St (describing the functors Fi, i ∈ Z/n). Let F : V ↔ N :G be
the spherical adjunction obtained by n − 1 times applying Proposition 3.21 to the
perverse schober on Γn, removing in each step any choice of edge from the n-spider.
Then there exists an equivalence

F ≃ Fn(F )

in Fun(Exit(Γn), St).

Proof. An ∞-category with a semiorthogonal decomposition can be recovered up
to equivalence from its gluing functor, see for instance [DKSS21, Chr22d]. We can
thus apply the Lemma 3.27 below (n − 1)-times to obtain an equivalence F(v) ≃
Fn(F )(v), where v denotes the vertex of Γn. Let j be the position of the first
edge removed from Γn upon application of Proposition 3.21. The functors F(v →
j) and ϱj = Fn(F )(v → j) both describe the projections to the final component
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of the semiorthogonal decomposition of F(v) ≃ Fn(F )(v). By Remark 3.20 and
Equation (28), the remaining functors F(v → i) and Fn(F )(v → i) are obtained,
up to postcomposition with equivalences, as repeated adjoints of F(v → j) and
ϱj = Fn(F )(v → j), respectively. These identifications assemble into the desired
equivalence F ≃ Fn(F ) in Fun(Exit(Γn), St).

Lemma 3.27. Let (Fi : Vn ←→ Ni :Gi)i∈Z/n be a perverse schober on the n-spider.
Then there is a semiorthogonal decomposition (fib(Fi), Im(Gi+1)) for any i ∈ Z/n. If
n = 2, the gluing functor is spherical and if n ≥ 3, the gluing functor from Im(Gi+1)
to fib(Fi) is fully faithful.

Proof. The semiorthogonal decomposition follows from fib(Fi) = fib(radj(Gi+1)). In
the case n = 2, the sphericalness of the gluing functor follows from the 4-periodicity
of the semiorthogonal decomposition, shown in the proof of Proposition 3.21. We
next consider the case n ≥ 3. Denote by ι the fully faithful functor fib(Fi) → Vn.
The gluing functor Ni+1

Gi+1−−−→ Vn
radj(ι)−−−→ fib(Fi) is the right adjoint of Fi+1|fib(Fi),

and thus fully faithful by Proposition 3.21.

3.2.2 The paracyclic structure

We begin by recalling the definition of the paracyclic 1-category Λ∞.

Definition 3.28. For n ≥ 0, let [n] denote the set {0, . . . , n}. The objects of Λ∞
are the sets [n]. The morphism in Λ∞ are generated by morphisms

• δ0, . . . , δn : [n− 1]→ [n],

• σ0, . . . , σn−1 : [n]→ [n− 1],

• τn,i : [n]→ [n] with i ∈ Z

subject to the simplicial relations and the further relations

τn,i ◦ τn,j = τn,i+j, τn,0 = id[n],

τn,1δi = δi−1τn−1,1 for i > 0, τn,1δ0 = δn,

τn,1σi = τn+1,1σi−1 for i > 0, τn,1σ0 = σnτn+1,2 .

The simplex category ∆ is a subcategory of Λ∞. A paracyclic object in an ∞-
category C is a functor Λop

∞ → C, where we identify the 1-category Λop
∞ with its nerve.

A paracyclic object in C is thus a simplicial object X∗ ∈ Fun(∆op,C) with face maps
di and degeneracy maps si together with a sequence of paracyclic isomorphisms
tn : Xn → Xn satisfying

ditn = tn−1di−1 for i > 0, d0tn = dn and (29)

sitn = tn+1si−1 for i > 0, s0tn = t2n+1sn . (30)
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Let F ⊣ G be a spherical adjunction. As shown in [DKSS21], the simplicial object
N(G[0])∗ can be lifted to a paracyclic object. The action of tn−1 on the (n− 1)-cells
corresponds to the rotational symmetry of the n-spider. In the following, we ex-
plicitly describe the paracyclic automorphism tn−1 of the n-cells VnF ≃N (G[0])n−1.
We realize tn−1 as the twist functor TVnF of a spherical adjunction F ′ ⊣ G′ described
below in Lemma 3.31. We call TVnF the paracyclic twist functor. We then proceed to
show that this isomorphisms indeed realizes the rotational symmetry (up to mon-
odromy) of the functors ϱi and ςi, corresponding geometrically to a rotation of the
n-spider.

Construction 3.29. Let F : V ↔ N :G be a spherical adjunction. Consider the
full subcategory M of the ∞-category of diagrams Fun(∆1 ×∆1,Γ(F )) of the form

a a′

b′ b

! ∗

with a, a′ ∈ V and b, b′ ∈ N. The restriction functor res : M → {V,N}, given by
the projection to the edge a → b is a trivial fibration. As shown in [DKSS21],
it follows from the sphericalness of the adjunction F ⊣ G, that the fiber functor
in the horizontal direction M → {V,N} is also an equivalence. By choosing a
section of the trivial fibration res and composing with the fiber functor we obtain
an autoequivalence τ : {V,N} → {V,N}, called the relative suspension functor in
loc. cit.

Lemma 3.30. Let F : V↔ N :G be a spherical adjunction with cotwist functor TN.
Denote the left adjoint of F by E. The left adjoint of the functor

V2
F = {V,N} rfib−−→ N (31)

is given by the functor that assigns E(b) ∗−→ T−1
N (b) to b ∈ N.

Proof. As shown in [Chr22d, Lemma 1.30], the stable subcategories

V⊥,V,N, ⊥N ⊂ V2
F

form semiorthogonal decompositions (V⊥,V), (V,N), (N, ⊥N) of V2
F . We denote by

iN, iV⊥ the inclusion functors of N and N ≃ V⊥ into V2
F , respectively. The functor

iV⊥ assigns to b ∈ N ≃ V⊥ the object G(b) !−→ b ∈ V2
F . It is easily checked that there

is a sequence of adjunctions

rfib[1] ⊣ iN ⊣ π0 ⊣ iV⊥ . (32)

Composing with the adjunction τ−1 ⊣ τ , where τ is the relative suspension functor
from Construction 3.29, with the sequence of adjunction (32) yields the sequence of
adjunctions

π0[1] ⊣ iV⊥ [−1] ⊣ T−1
N rfib[1] ⊣ iNTN .

We have thus established the desired adjunction iV⊥T−1
N ⊣ rfib.
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Lemma 3.31. Let F : V↔ N :G be a spherical adjunction with cotwist functor TN.
For n ≥ 2, consider the functor

F ′ : VnF −→ N×n

with components F ′ = (ϱ1, . . . , ϱn).

(1) The functor F ′ admits left and right adjoints E ′, respectively, G′, given by

E ′ = (ς2, . . . , ςn, ς1T−1
N [n− 1]) ,

G′ = (ς1, . . . , ςn) .

(2) The adjunction F ′ ⊣ G′ is spherical. We denote the twist functor by F ′ ⊣ G′ by
TVnF , and call it the paracyclic twist functor.

Proof. Denote the left adjoint of F by E.
We begin with showing part (1). The adjunction F ′ ⊣ G′ follows from composing

the adjunctions ϱi ⊣ ςi with the adjunction ∆ ⊣ ⊕ between the constant diagram
functor ∆: N → N×n and its right adjoint given by the direct sum functor. Again
by composing adjunctions, we obtain that to show that E ′ is left adjoint to F ′ it
suffices to show that ς1T−1

N [n−1] is left adjoint to ϱn. This follows directly from the
following observations.

• The functor ϱn factors as

VnF
π1,2−−→ V2

F

rfib[n−1]−−−−−→ N .

• The left adjoint of rfib: V2
F → N was determined in Lemma 3.30 and is given

by the functor that maps b ∈ N to E(b) ∗−→ T−1
N (b).

• The left adjoint of π1,2 is given by the functor that maps E(b) ∗−→ T−1
N (b) ∈ V2

F

to E(b) ∗−→ T−1
N (b) id−→ . . .

id−→ T−1
N (b) ∈ VnF .

For part (2), consider the endofunctor M = F ′G′ : N×n → N×n of the adjunction
F ′ ⊣ G′ with cotwist functor TN×n . We can depict M as the following matrix.

idN idN 0 . . . 0 0
0 idN idN . . . 0 0
0 0 idN . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . idN idN

TN[n− 1] 0 0 . . . 0 idN


The counit cu : M → idN×n is the projection to the diagonal, so that we deduce
that the cotwist TN×n is an equivalence. We further observe that there exists an
equivalence cu ◦TN×n ≃ TN×n ◦ cu. The left adjoint E ′ : N×n → Vn clearly satisfies
G′◦T−1

N×n . We have shown that all conditions of [Chr22d, Proposition 4.5] are fulfilled
and it follows that the adjunction F ′ ⊣ G′ spherical.
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Proposition 3.32. Let F : V ↔ N :G be a spherical adjunction and consider the
paracyclic twist functor TVnF from Lemma 3.31. Then there exist equivalences of
functors

ϱi ◦ TVnF =
ϱi+1 for 1 ≤ i ≤ n− 1
TN[n− 1] ◦ ϱ1 for i = n

(33)

and

T−1
VnF
◦ ςi =

ςi+1 for 1 ≤ i ≤ n− 1
ς1 ◦ T−1

N [1− n] for i = n
(34)

Proof. By the 2/4 property of spherical adjunctions there exists an equivalence
T−1
VnF
G′ ≃ E ′, showing the identities (34). The identities (33) follow from passing to

left adjoints.

Proposition 3.32 implies that ϱi ◦ T nVnF ≃ TN[n − 1]ϱi. We should consider the
change in a perverse schober on the n-spider obtained by composition with TVnF as
the effect of an 1

n
-th of a full rotation. The effect of a full rotation on a perverse

schober on the n-spider is composition by the shifted twist functor TN[n− 1], which
describes up to shift the monodromy of the perverse schober around its singularity
at the vertex of the n-spider.

3.3 Parametrized perverse schobers globally
In Section 3.3.1 we define the notion of a perverse schober parametrized by a rib-
bon graph and its ∞-category of global sections. In Section 3.3.2, we discuss how
perverse schobers parametrized by different ribbon graphs can be related. In Sec-
tion 3.3.3, we introduce a notion of semiorthogonal decomposition of parametrized
perverse schobers, which give rise to semiorthogonal decompositions of the ∞-
categories of global sections. In Section 3.3.4, we discuss how to define the mon-
odromy along a loop of a perverse schober.

3.3.1 Parametrized perverse schobers

Given a ribbon graph Γ and a vertex v ∈ Γ0 of valency n, the under-category
Exit(Γ)v/ has n + 1 objects, which can be identified with v and its n incident
halfedges and non-identify morphisms going from v to these halfedges. The da-
tum of a diagram F : Exit(Γ)v/ → St thus amounts to n functors F(v)→ F(a), with
a some halfedge, together with a cyclic order of these functors. There is a functor
Exit(Γ)v/ → Exit(Γ), which is fully faithful if Γ has no loops incident to v.

Definition 3.33. Let Γ be a ribbon graph. A functor F : Exit(Γ) → St is called
a Γ-parametrized perverse schober if for each vertex v of Γ, the restriction of F to
Exit(Γ)v/ determines a perverse schober parametrized by the n-spider in the sense
of Definition 3.18.

Γ-parametrized perverse schobers form an ∞-category, given by the full subcat-
egory of the functor category Fun(Exit(Γ), St) spanned by perverse schobers.
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We will also call a functor F : Exit(Γ) → C, with C = PrLSt,Pr
R
St,LinCatR, with

R an E∞-ring spectrum, a Γ-parametrized perverse schober if its composite with
the forgetful functor to St defines a Γ-parametrized perverse schober in the sense of
Definition 3.33.

Remark 3.34. If F is a Γ-parametrized perverse schober and v ∈ Γ0, we can
repeatedly apply Proposition 3.21 to the perverse schober on the n-spider F|Exit(Γ)v/
to obtain a spherical functor F : Vv → N. This resulting spherical functor does
not depend on the chosen integers 1 ≤ j ≤ n up to composition with equivalences
of ∞-categories, as follows from Proposition 3.26. We say that F is described or
encoded at v by F . We call v a singularity of F if Vv ̸= 0.

Since we assumed ribbon graphs to be connected, a Γ-parametrized perverse
schober assigns to each edge of Γ an equivalent ∞-category N, which we call the
generic stalk of the perverse schober.

Remark 3.35. Given a Γ-parametrized perverse schober F and a morphism α in
Exit(Γ), the functor F(α) always admits both left and right adjoints, as follows from
the sequence of adjunctions (28). If F takes values in presentable ∞-categories, it
thus automatically factors through the forgetful functors PrRSt,Pr

L
St → St. Most per-

verse schobers we encounter will be of this form, and we refer to these as presentable
parametrized perverse schobers.

Definition 3.36. Let Γ be a ribbon graph and F a Γ-parametrized perverse schober.

• The ∞-category of global sections H(Γ,F) ∈ St of F is defined as the limit of
F. We usually identify H(Γ,F) with the ∞-category of coCartesian sections
of the Grothendieck construction p : Γ(F)→ Exit(Γ) of F, see Section 2.1.3.

• The ∞-category of local sections L(Γ,F) = FunExit(Γ)(Exit(Γ),Γ(F)) ∈ St of
F is defined as the∞-category of all sections of the Grothendieck construction
p.

Let F be a Γ-parametrized perverse schober. Given an edge e of Γ, we denote
by eve : H(Γ,F) → F(e) the evaluation functor, which maps a coCartesian section
s of p to its value s(e) at e. The functors eve preserve all finite limits and colimits
by [Lur09, 5.1.2.3, 4.3.1.10, 4.3.1.16]. If we assume that F is presentable, the functors
eve further preserve all (small) limits and colimits. In this case, by the∞-categorical
adjoint functor theorem, eve admits a left and right adjoints.

Definition 3.37. Let F be a presentable Γ-parametrized perverse schober. The
functor

∂F :
∏
e∈Γ∂1

F(e) −→ H(Γ,F)

is defined as the left adjoint of∏
e∈Γ∂1

eve : H(Γ,F)→
∏
e∈Γ∂1

F(e) . (35)
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Remark 3.38. In the study of partially wrapped Fukaya categories, particularly
Fukaya-Seidel categories, the functor ∂F is often called the cap functor and∏e∈Γ∂1 eve
is called the Orlov functor or cup functor, see for instance [Syl19] for background.

Proposition 3.39. Let F be a Γ-parametrized perverse schober taking values in
presentable ∞-categories. Assume that the generic stalk N of F admits a compact
generator X ∈ N and that at each vertex of Γ the perverse schober F is encoded by
a conservative spherical functor. For e ∈ Γ1, let ev∗

e : F(e) → H(Γ,F) be the left
adjoint of eve. Then the image of (X, . . . , X) under

∏
e∈Γ1

N ≃
∏
e∈Γ1

F(e)
∏
e∈Γ1

ev∗
e

−−−−−−→ H(Γ,F)

is a compact generator of H(Γ,F).

Proof. Let v be a m-valent vertex of Γ with incident halfedges a1, . . . , am, corre-
sponding to edges e1, . . . , em. Let F : V→ N be the spherical functor encoding F at
v. Consider an object Y ∈ VmF ≃ F(v), which corresponds to a diagram of the form

a→ b1 → · · · → bm−1 ,

with a ∈ V and bi ∈ N, such that F(v ai−→ ei)(Y ) ≃ 0 for all 1 ≤ i ≤ m. Since
F|Exit(Γ)v/ ≃ Fm(F ), this implies that bm−1 ≃ ϱ1(Y ) ≃ 0. Proceeding with an
iterative argument, we find that bi[m− 1− i] ≃ ϱm−i(Y ) ≃ 0 for all 1 ≤ i ≤ m− 1.
Finally, since F is conservative, it follows from F (a)[m−1] ≃ ϱm(Y ) ≃ 0 that a ≃ 0
and thus also Y ≃ 0.

A global section of F vanishes if and only if its value at each object x ∈ Exit(Γ)
vanishes. The above computation shows that the values of a global section at all
x ∈ Exit(Γ) vanish if and only if the values at all edges e ∈ Γ1 vanish. This is
equivalent to the assertion that (X, . . . , X) is a compact generator.

Definition 3.40. The ∞-categories of left/right presentable Γ-parametrized per-
verse schobers

PL(Γ) ⊂ Fun(Exit(Γ),PrLSt)
and

PR(Γ) ⊂ Fun(Exit(Γ),PrRSt)
are defined as the full subcategories spanned by Γ-parametrized perverse schobers.

Remark 3.41. Consider a ribbon graph Γ. Given a Γ-parametrized perverse schober
F, we can pass to the right adjoint or left adjoint diagrams FR,FL : Exit(Γ)op −→ St.
Lemma 3.31 implies that there exists an equivalence FR ≃ FL in Fun(Exit(Γ)op, St),
which restricts on each vertex v with corresponding spherical adjunction Fv ⊣ Gv to
the twist functor of the spherical adjunction F ′

v ⊣ G′
v.

If F takes values in presentable ∞-categories, we have factorizations

FR,FL : Exit(Γ)op → PrLSt → St
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and there exist equivalences of ∞-categories

H(Γ,F) ≃ colim
PrL

FL ≃ colim
PrL

FR .

We can thus, assuming presentability, equivalently express parametrized perverse
schobers and their ∞-categories of global sections in terms of their adjoint con-
structible cosheaves.

Notation 3.42. We will use a graphical notation for perverse schobers parametrized
by ribbon graphs similar to the graphical notation for ribbon graphs introduced in
Notation 3.5. We denote a parametrized perverse schober by specifying the spherical
functor at each vertex of the corresponding ribbon graph and specifying the functor
associated to each non-identity morphism in the exit path category.

Example 3.43. Let F : V→ N be a spherical functor and T : N→ N some autoe-
quivalence. The diagram

F

0N 0N

(T◦ϱ1,ϱ1)
(ϱ1,ϱ2)

(ϱ3,ϱ2)
ϱ3

(36)

corresponds to the parametrized perverse schober given by the following Exit(Γ)-
indexed diagram in St,

V

N

N V3
0N N V3

0N N

T◦F

ϱ1

ϱ3

ϱ2
ϱ1

ϱ2 ϱ3

where 0N : 0→ N denotes the spherical zero functor.

3.3.2 Contractions of ribbon graphs

The goal of this section is to show that that parametrized perverse schobers can be
transported along contractions of ribbon graphs which do not contract any edges
connecting two singularities, such that the ∞-categories of global sections are pre-
served up to equivalence.

Definition 3.44.

• Let Γ be a ribbon graph and e ∈ Γ1 an edge connecting two distinct vertices
v1, v2. Let {e1, e2} be the orbit representing the edge e. We define a ribbon
graph Γ′ with
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– Γ′
0 = Γ0/(v1 ∼ v2) is the set obtained from Γ0 obtained by identifying v1

and v2,
– HΓ′ = HΓ \{e1, e2},
– τ : HΓ′ → HΓ′ is the restriction of τ : HΓ → HΓ.
– σ : HΓ′ → Γ′

0 is the composite map : HΓ′ ⊂ HΓ
σ−→ Γ0 → Γ′

0.
– the cyclic order on HΓ′(v) with v ∈ Γ′

0\[v1] is identical to the cyclic order
on HΓ(v). Choose any two linear orders of the elements of HΓ(v1)\{e1}
and HΓ(v2)\{e2} compatible with the given cyclic ordering. Consider the
total order on

HΓ′([v1]) =
(

HΓ(v1)\{e1}
)
∪
(

HΓ(v2)\{e2}
)

which restricts to the given total orders on HΓ(v1)\{e1},HΓ(v2)\{e2} and
such that all elements of HΓ(v2)\{e2} follow the elements in HΓ(v1)\{e1}).
We let the cyclic order on HΓ′([v1]) to be the cyclic order induced by the
above total order.

We call Γ′ the edge contraction of Γ at e.

• Let Γ and Γ′ be ribbon graphs. We say that there exists a contraction from Γ
to Γ′ if Γ′ is obtained as a (finitely many times) repeated edge contraction of
Γ. We write c : Γ→ Γ′.

Lemma 3.45. Let F : V↔ N :G be a spherical adjunction and denote by 0N : 0→ N

the spherical zero functor. Let m,n ≥ 1 and consider the stable ∞-categories Vm0N
and VnF , with corresponding functors from Lemma 3.24 denoted ϱ1

i : Vm0N → N, for
i = 1, . . . ,m, and ϱ2

j : VnF → N, for j = 1, . . . , n.

1. There exists a pullback diagram in Cat∞ as follows.

Vn+m−2
F VnF

Vm0N N

α

β
⌟

ϱ2
1

ϱ1
m

(37)

2. Consider the functors ϱ1, . . . , ϱn+m−2 : Vn+m−2
F → N. There exist equivalences

of functors ϱj ≃ ϱ1
j ◦β and ϱi+m−2 ≃ ϱ2

i ◦α for j = 1, . . . ,m−1 and i = 2, . . . n.

Proof. Let D1 : ∆m−2 → St be the constant diagram with value N and D2 : ∆n−1 →
St, D : ∆n+m−3 → St be the diagrams obtained from the sequences of composable
functors

V
G−−→ N

id−−→ . . .
id−−→ N .

The diagramD restricts to the diagramsD1 andD2 on ∆{0,...,n−1} and ∆{n−1,...,n+m−3},
respectively. The inclusion functor ∆{0,...,n−1} ⨿∆{n−1} ∆{n−1,...,n+m−3} → ∆n+m−3 is
inner anodyne. It follows that the restriction functor

res : Fun(∆n+m−3,Γ(D))→ Fun(∆n−1,Γ(D1))×N Fun(∆m−2,Γ(D2))
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is a trivial fibration, from which we obtain a further trivial fibration

Fun∆n+m−3(∆n+m−3,Γ(D))→ Fun∆n−1(∆n−1,Γ(D1))×N Fun∆m−2(∆m−2,Γ(D2)) .

Using the equivalences of ∞-categories

VnF ≃ Fun∆n−1(∆n−1,Γ(D2)) ,
Vm0N ≃ Fun∆m−2(∆m−2,Γ(D1)) ,

Vn+m−3
F ≃ Fun∆n+m−3(∆n+m−3,Γ(D)) ,

it follows that there exists a pullback diagram of the form (37). The functors α[2−m]
and β in this pullback diagram are given by the restriction functors to the first m−1
and last n components, respectively. The description of the categorified restriction
maps can thus be checked directly.
Construction 3.46. Consider the setup of Lemma 3.45 and the following diagram,

VnF

Vm0N N

ϱ2
j

ϱ1
i

(38)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n are arbitrary. We can use the paracyclic twist func-
tors

(
TVnF

)1−j
and

(
TVm0N

)m−i
, see Section 3.2.2 and Proposition 3.32 in particular,

to find a natural equivalence between the diagram (38) and the following diagram.

VnF

Vm0N N

ϱ2
1

ϱ1
m

(39)

The limits of the diagrams (38) and (39) are therefore both equivalent to Vn+m−2
F .

Proposition 3.32 further shows that under this equivalence the resulting functors
ϱi : Vn+m−2

F → N are cyclically permuted and may each further change by post-
composition with an autoequivalence of the form (TN[n− 1])l for some l ∈ Z.
Proposition 3.47. Let c : Γ→ Γ′ be a contraction of ribbon graphs.
(1) Let F be a Γ-parametrized perverse schober and assume that c contracts no edges

incident to two singularities of F. Then there exists a canonical Γ′-parametrized
perverse schober c∗(F) and an equivalence of global sections

c∗ : H(Γ,F) ≃ H(Γ′, c∗(F)) .

(2) Let F′ be a Γ′-parametrized perverse schober. For each choice of subset S ⊂ Γ0,
such that c|S : S → Γ′

0 defines a bijection between S and the singularities of F′,
there exists a Γ-parametrized perverse schober c∗(F′), satisfying c∗c

∗(F′) ≃ F′.
There thus exists an equivalence of global sections

c∗ : H(Γ′,F′) ≃ H(Γ, c∗(F′)) .
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Proof. We begin by proving part (1). It suffices to show the statement in the case
that c is the contraction of an edge e ∈ Γ1 connecting two vertices v1, v2 such that
v1 is not a singularity. The edge contraction c induces a functor Exit(c) :Exit(Γ)→
Exit(Γ′) determined by mapping

• x ∈ Γ0\{v1, v2} ⊂ Exit(Γ) to x ∈ Γ0\{v1, v2} ⊂ Exit(Γ′),

• v1, v2 ∈ Γ0 ⊂ Exit(Γ) to [v1],

• f ∈ Γ1\{e} ⊂ Exit(Γ) to f ∈ Γ1\{e} ⊂ Exit(Γ′) and

• e ∈ Γ1 ⊂ Exit(Γ) to [v1] ∈ Γ′
0 ⊂ Exit(Γ′).

We define E to be the poset determined by the following properties.

• There exist fully faithful functors Exit(Γ′),Exit(Γ)→ E.

• The induced functor Exit(Γ′)⨿ Exit(Γ)→ E is bijective on objects

• For x′ ∈ Exit(Γ′) and x ∈ Exit(Γ), there exists a unique morphism from x′ to
x in E if and only if there exists a morphism x′ → Exit(c)(x). There are no
morphisms from x to x′.

Note that the poset E can be equivalently described as the total space of a Cartesian
fibration classified by the functor Exit(c) : ∆1 → Cat∞.

We define a functor c∗ : Fun(Exit(Γ), St)→ Fun(Exit(Γ′), St) as the composition
of the right Kan extension functor along the inclusion Exit(Γ)→ E with the restric-
tion functor to Exit(Γ′). and define c∗(F) as the image of F under c∗. It follows
from Lemma 3.45 and Construction 3.46 that c∗(F) is a Γ′-parametrized perverse
schobers. The fact that c∗ preserves global sections (i.e. limits) follows from the fact
that iterated right Kan extensions along inclusions are again right Kan extensions,
or alternatively a decomposition result for limits [Lur09, 4.2.3.10].

For part (2), it suffices to treat the case that c contracts a single edge e of Γ
incident to vertices v1, v2, whose image in Γ′ is denoted v. Swapping the labels of
v1 and v2 if necessary, we may assume that S = {v2}. Let mi be the valency of
vi, i = 1, 2, and n = m1 + m2 − 2 the valency of v. Replacing F′ by an equivalent
Γ′-parametrized perverse schober, we may assume that near v, F′ is given by the
following diagram:

N N

. . . VnFv . . .

N N

ϱm1−1 ϱm1

ϱn

ϱ1
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We define c∗(F′) to be identical to F′ away from v1, v2 and near v1, v2 as the
following diagram,

N N

. . . Vm1
0N N Vm2

Fv . . .

N N

ϱm1

ϱ1

ϱm1−1

ϱ2

ϱm2

ϱ1

where we denote by 0N the spherical functor 0 : 0→ N. By [Chr22b, Lemma 4.26],
we then get c∗c

∗(F′) ≃ F′. The second statement of part 2) now follows from part
1).

3.3.3 Semiorthogonal decompositions of perverse schobers

Let Γ be a ribbon graph. We note that a morphism α : F → G of Γ-parametrized
perverse schobers in one of the ∞-categories PL(Γ) or PR(Γ), see Definition 3.40,
is simply a natural transformation ∆1 × Exit(Γ) → PrLSt or ∆1 × Exit(Γ) → PrRSt
between the diagrams defining F and G.

Definition 3.48. Let Γ be a ribbon graph and let α : F → G be a morphism of
Γ-parametrized perverse schobers in PL(Γ) or PR(Γ).

1. We call α an inclusion of perverse schobers in PL(Γ) or PR(Γ) if α(x) : F(x)→
G(x) is the inclusion of a stable subcategory (in particular fully faithful) for
all x ∈ Exit(Γ).

2. Suppose that α is an inclusion in PL(Γ). We call α right admissible if there
exists a morphism β : G→ F in PR(Γ) such that β(x) is right adjoint to α(x)
for all x ∈ Exit(Γ).

3. Suppose that α is an inclusion in PR(Γ). We call α left admissible if there
exists a morphism β : G → F in PL(Γ) such that β(x) is left adjoint to α(x)
for all x ∈ Exit(Γ).

Remark 3.49. Let α : F → G be an inclusion of Γ-parametrized perverse schobers.
Spelling out the condition that α is left admissible yields the requirement that for
each morphism v → e in Exit(Γ) the diagram

F(v) G(v)

F(e) G(e)

F(v→e)

α(v)

G(v→e)

α(e)

(40)
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is left adjointable, meaning that the diagram

F(v) G(v)

F(e) G(e)

F(v→e) G(v→e)

β(v)

β(e)

commutes, with β(x) left adjoint to α(x) for x = v, e. Analogously, the condition
that α is right admissible is equivalent to the right adjointability of the diagram (40).
Adjointability of a commutative square is also called the Beck-Chevalley property.

Definition 3.50. Let Γ be a ribbon graph. A semiorthogonal decomposition {F1,F2}
of a Γ-parametrized perverse schober G consists of

• an inclusion α1 : F1 → G in PR(Γ) and

• an inclusion α2 : F2 → G in PL(Γ), satisfying that

• α1 is left admissible and that α2 is right admissible and that

• the cofiber of α2 in Fun(Exit(Γ),PrLSt) is given by F1.

Remark 3.51. Consider a Γ-parametrized perverse schober G with a semiorthogonal
decomposition {F1,F2}.

1. Then for each x ∈ Exit(Γ), the ∞-category G(x) admits a semiorthogonal
decomposition (F1(x),F2(x)).

2. The condition that F1 is the cofiber of α2 in Fun(Exit(Γ),PrLSt) is equivalent to
the condition that F2 is the fiber of the pointwise right adjoint β1 : G→ F1 of
α1 in Fun(Exit(Γ),PrRSt). This follows from the fact that limits and colimits in
functor categories are determined pointwise, see [Lur09, 5.1.2.3]. Since limits
commute with limits, we find that there exists a fiber sequence in PrLSt

H(Γ,F2) i−→ H(Γ,G) π−→ H(Γ,F1) .

Passing to right adjoints yields a cofiber sequence in PRSt, showing by Lemma 2.37
that H(Γ,G) admits a semiorthogonal decomposition(

radj(π)(H(Γ,F1)), i(H(Γ,F2))
)
.

Definition 3.52. Let F be a Γ-parametrized perverse schober. Recall that given a
vertex v of Γ, F is described near v by a spherical functor F : Vv → N, where Vv is
called the ∞-category of vanishing cycles and N the ∞-category of nearby cycles.
We call

• F vanishing-monadic, if at each vertex v of Γ the spherical functor Fv : Vv → N

describing F at v is a monadic functor.
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• F nearby-monadic, if at each vertex v of Γ the right adjoint of the spherical
functor Fv describing F at v is a monadic functor.

• F locally constant if F has no singularities.

Remark 3.53. A spherical functor between presentable ∞-categories is monadic
if and only if it is comonadic if and only if it is conservative, as follows from the
∞-categorical Barr-Beck theorem [Lur17, 4.7.3.5].

3.3.4 Monodromy of perverse schobers

Let Γ be a spanning graph of a marked surface S and fix a Γ-parametrized perverse
schober F. We denote by P the set of vertices of Γ which are singularities of F,
see Remark 3.34. In analogy with perverse sheaves on S, which restrict to a local
system on S\P , we wish to associate a monodromy equivalence of F along any loop
S1 ⊂ S\P . We construct these by composing local identifications, which we refer to
as transports. We begin in Construction 3.55 by considering a perverse schober on
the n-spider Γn and describe how to obtain the local transport along a path in the
once-punctured n-gon. For technical convenience, we however replace the n-gon by
the homotopic surface Σn described in the following remark:

Remark 3.54. Let Γ be a ribbon graph. To each vertex v of Γ of valency n we
associate a (non-compact) surface, denoted Σv or also Σn, with an embedding of v
and its n incident halfedges. We depict Σv as follows (in green). The dotted lines
correspond to open ends, whereas the solid lines indicate the boundary.

... v

We define the thickening of Γ to be the surface ΣΓ, obtained from gluing the sur-
faces Σv, whenever two vertices are incident to the same edge, at their boundary
components corresponding to the edge. The surface ΣΓ comes with an embedding
of |Γ|, which is also a homotopy equivalence.

If Γ is a spanning graph of a marked surface S, then we further choose a homotopy
equivalence ΣΓ → S, which maps boundary to boundary, the open boundary of ΣΓ
in the limit to M ∩ ∂S, and satisfying that the composite |Γ| → ΣΓ → S\M is the
given embedding of the spanning ribbon graph Γ.

Construction 3.55. Let n ≥ 2, the case n = 1 is addressed at the end. Consider
the n-spider Γn with central vertex v embedded in Σn. Consider a curve δ : [0, 1]→
Σn\{v} satisfying that δ(0), δ(1) ∈ ∂Σn ∩ |Γn| and that the edge e1 of Γn containing
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δ(1) lies one step in the counterclockwise direction of the edge e0 containing δ(0).
We can depict this setup as follows:

... v

δ

e1

e0

Given a Γn-parametrized perverse schober F, we define the transport F→(δ) of F

along δ as the equivalence

F(e0)
ladj(F(v→e0))−−−−−−−−→ F(v) F(v→e1)−−−−−→ F(e1) .

We note that the transport of F along a path γ only depends on the homotopy class
of γ under homotopies preserving endpoints.

Reversing the orientation of δ yields a path δrev going one step in the clockwise
direction along Γn and the transport of F along δrev is defined as

F→(δrev) := F(v → e0) ◦ radj(F(v → e1)) : F(e1) −→ F(e0) .

We thus have F→(δrev) ≃ (F→(δ))−1.
Consider a now an arbitrary path δ : [0, 1] → Σn\{v}, such that δ(0), δ(1) ∈

∂Σv ∩ |Γn|. This path starts at some edge e0 of Γn and ends at some edge e1 and
goes i ∈ Z steps counterclockwise. Replacing δ by a homotopic path, with the
homotopy fixing endpoints and not crossing v, we can assume that δ = δ|i| ∗ · · · ∗ δ1
is the composite of |i| ∈ N paths δ1, . . . , δ|i|, as above, each wrapping one step
counterclockwise if i > 0 and one step clockwise if i < 0. If i = 0, then after the
homotopy, δ is the constant path and we define the transport F→(δ) as idF(e0). For
i > 0 (i.e. a counterclockwise path), we define the transport of F along δ as the
equivalence

F→(δ) := F→(δ|i|) ◦ · · · ◦ F→(δ1)[i− 1] , (41)
and for i < 0 (i.e. a clockwise path) as

F→(δ) := F→(δ|i|) ◦ · · · ◦ F→(δ1)[1− i] . (42)

The suspension is chosen, so that the transport along a counterclockwise loop of a
perverse schober on the n-gon with no singularity at v is given by [1]. Note that
the monodromy defined below will thus be idF(e0). If the perverse schober instead
has a singularity at v, the transport along a counterclockwise loop can be identified
with the inverse cotwist autoequivalence of the spherical adjunction describing the
perverse schober near v.
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We conclude with the case n = 1. Given a perverse schober F parametrized
by the 1-spider, with vertex v and edge e, i.e. a spherical functor F : V = F(v) →
N = F(e), and a loop δ : [0, 1] → Σ1\{v} with the endpoint the unique point in
∂Σ1 ∩ |Γ1|, wrapping m times around v in the counterclockwise direction, we define
the transport as F→(δ) := (TN)−m[1 − m], where TN denotes the cotwist functor
of the adjunction F ⊣ radj(F ). If δ instead wraps clockwise around v, we set
F→(δ) := (TN)m[m− 1].

Construction 3.56. Let Γ be a ribbon graph and consider a path η : [0, 1]→ Σγ\Γ0,
mapping 0 and 1 to edges e0, e1 of Γ. We can write η as the composite of a minimal
number of paths δ1, . . . , δm, with δi contained in Σvi ⊂ ΣΓ for some vertex vi ∈ Γ0
and δ1(0) = x. Concretely, the paths δi near a given vertex v are obtained as the
components of the intersection of γ with Σv ⊂ ΣΓ.

Let F be an Γ-parametrized perverse schober. We define the transport F→(η) of
F along η as the equivalence F(e0) ≃ F(e1) given by the composite

F→(δm) ◦ · · · ◦ F→(δ1) .

Lemma 3.57. Let F be a Γ-parametrized perverse schober with singularities P . Let
η, η′ : [0, 1]→ ΣΓ\Γ0 be two paths with η1(0) = η2(0), η1(1) = η2(1) lying on edges of
Γ. If γ1, γ2 are homotopic in ΣΓ\P relative ∂ΣΓ and their endpoints, then

F→(η1) ≃ F→(η2) .

Proof. It is clear by the definition of the transport, that homotopies in ΣΓ\Γ0 relative
the boundary do not affect the transport. It thus suffices to show that for a non-
singular vertex v ∈ Γ0\P , the transports of two paths δ, δ′ in Σv going from an edge
e to an edge f , where δ goes clockwise and δ′ goes counterclockwise, are equivalent.
Using the local model for perverse schobers from Proposition 3.25, this is readily
verified.

The transport of a composite of paths is not necessarily the composite of the
transports of the paths, as there may arise suspenions or deloopings from (41). This
is fixed as follows:

Construction 3.58. Let η = δm ∗ · · · ∗ δ1, η
′ = δ′

m′ ∗ · · · ∗ δ′
1 : [0, 1] → Σγ be paths

as in Construction 3.56. We note that η = η′ being a loop is allowed. We associate
to the pair (η, η′) the following integer N(η, η′) ∈ {−1, 0, 1}.

If δm, δ′
1 lie at distinct vertices, we set N(η, η′) = 0. Assume that δm, δ′

1 lie at
the same vertex v. If the end point of δm, denoted δm(1), and the starting point
of δ′

1, denoted δ′
1(0), lie on distinct boundary components of ∂Σvm (whose images

in ΣΓ are however be same), we also set N(η, η′) = 0. Assume that δm(1), δ′
1(0) lie

on the same boundary component of Σvm , denoted B. Replacing δm, δ′
1 ⊂ Σvm by

homotopic paths, we may assume that the two do not intersect. We set N(η, η′) = 1,
if the intersection point δ′

1(0) ∈ B follows the intersection point δm(1) ∈ B in the
counterclockwise direction. Otherwise, we set N(η, η′) = −1.
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Lemma 3.59. Let η, η′ : [0, 1] → ΣΓ\Γ0 be two paths with η1(1) = η2(0) and com-
posite η′ ∗ η. Then

F→(η′ ∗ η) ≃ F→(η′) ◦ F→(η)[N(η, η′)] . (43)

Proof. The minimal decompositions η = δm ∗ · · · ∗ δ1, η
′ = δ′

m′ ∗ · · · ∗ δ′
1 give rise to

a minimal decomposition of η′ ∗ η. If N(η, η′) = 0, then this decomposition is

δ′
m′ ∗ · · · ∗ δ′

1 ∗ δm ∗ · · · ∗ δ1 ,

and (43) follows from the definition of transport. If N(η, η′) = ±1, then the decom-
position is

δ′
m′ ∗ · · · ∗ (δ′

1 ∗ δm) ∗ · · · ∗ δ1 .

with (δ′
1 ∗ δm) describing a curve in Σv for some vertex v. Inspecting (41) and (42),

one observes that

F→(δ′
1 ∗ δm) ≃ F→(δ′

1) ◦ F→(δm)[N(η, η′)]

and (43) follows.

Definition 3.60. Let Γ be a ribbon graph and F a Γ-parametrized perverse schober.
Consider a loop γ : S1 ≃ [0, 1]/(0 ∼ 1)→ ΣΓ\Γ0, mapping the chosen basepoint x =
0 ∈ [0, 1]/(0 ∼ 1) ≃ S1 to an edge e ∈ Γ1. Let η : [0, 1] → [0, 1]/(0 ∼ 1) γ−→ ΣΓ\Γ0.
The monodromy of F along γ is defined as the autoequivalence of F(e)

F→(γ, e) = F→(η)[N(η, η)] .

More generally, given a loop γ : S1 ≃ [0, 1]/(0 ∼ 1) → ΣΓ\P , mapping 0 to
e ∈ Γ1, we can define the monodromy of F along γ by choosing a homotopic path γ′

in ΣΓ\Γ0 and defining F→(γ, e) := F→(γ′, e). This is well-defined by Lemma 3.57.

Example 3.61. Consider a perverse schober F on the once-punctured disc C,
parametrized by the 1-spider Γ1, and described by a spherical functor F : V → N.
Let G be the right adjoint of F and TN the cotwist functor of F ⊣ G. The mon-
odromy of F along a loop wrapping once clockwise around the singularity is given
by TN[1]. Passing to Grothiendieck groups, i.e. applying K0(-), we obtain a perverse
sheaf on C with a single singularity. We have

K0(TN) = K0(F )K0(G)−K0(idN) .

The isomorphism

K0(TN[1]) = −K0(TN) = K0(idN)−K0(F )K0(G)

describes the (usual) monodromy of this perverse sheaf.
Similarly, given a perverse schober on the n-times punctures disc, the monodromy

along a clockwise loop enclosing all singularities is given by the composite of the
suspensions of the cotwist functors of the corresponding spherical adjunctions.
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Lemma 3.62. Let F be a Γ-parametrized perverse schober and γ : S1 → S\P a loop,
mapping the basepoint to an edge e of Γ. Let c : Γ → Γ′ be a contraction of ribbon
graphs contracting no edges connecting two singularities of F and not contracting e.
Then

F→(γ, e) ≃ c∗(F)→(γ, e) .

Proof. It suffices to consider the case that c contracts a single edge e′. Since F

and c∗(F) are identical away from a neighborhood of e′, it suffices to show that the
transports in the neighborhood of e′ of F and c∗(F) coincide. Using the explicit
local models for F and c∗(F) near e′ from Lemma 3.45, this is straightforward to
verify.

Proposition 3.63. Let F1,F2 be two Γ-parametrized perverse schobers without sin-
gularities. Assume that there exists an edge e of Γ, such that F1(e) = F2(e). The
following two are equivalent:

1) There exists an equivalence of Γ-parametrized perverse schobers F1 ≃ F2.

2) Given any loop γ : S1 → S\P , mapping the basepoint to a point in e ⊂ S, the
monodromy of F1 and F2 along γ are equivalent.

Proof. It is clear that 1) implies 2). We proceed by proving the converse. Denote
by N = F1(e) the generic stalk. Choose a contraction c : Γ → Γ′, such that e
is not contracted and Γ′ has only a single vertex. Lemma 3.62 implies that the
monodromies of c∗(F1) and c∗(F2) along any loop γ mapping the basepoint to e
are equivalent. We choose a total order of the m halfedges incident to the vertex v
of Γ′, compatible with their given cyclic order. We denote the i-th halfedge by ai,
and its corresponding edge by ei. We can replace c∗(F1) and c∗(F2) by equivalent
Γ′-parametrized perverse schobers, denoted G1 and G2, such that for j = 1, 2 and
1 ≤ i ≤ m

Gj(v) ≃ Vm0N ,

Gj(ei) = N ,

and
Gj(v

ai−→ ei) = Si,j ◦ ϱi ,

where Si,j is some autoequivalence of N. The monodromy along a path γ starting at
e and going around a given loop of Γ′, composed of halfedges ai, ai′ of Gj, is given by
Si′,j ◦ S−1

i,j [i′ − i+ 1]. We thus find Si′,1S
−1
i,1 ≃ Si′,2S

−1
i,2 . We can additionally assume

that Si′,2 = Si′,1 = idG(e), by replacing G1,G2 by equivalent perverse schobers once
more. We thus conclude Si,1 ≃ Si,2 as well. Performing this argument for all loops
of Γ′ shows that G1 ≃ G2, concluding the proof.

The assumption in Proposition 3.63, that the perverse schobers have no singu-
larities, is necessary. The following example shows that there exist non-equivalent
perverse schobers with equivalent singularity data and equivalent monodromy.
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Example 3.64. Consider the following spanning graph Γ of the twice-punctured
1-gon:

× ×

◦

A Γ-parametrized perverse schober F with two singularities at the vertices labeled
× and no singularity at the vertices labeled ◦ corresponds, up to natural equivalence
and using Notation 3.42, to a diagram

F1 F2

0N

(S1◦ϱ1,ϱ3) (ϱ2,S2◦ϱ1)

ϱ1

with F1 : V1 → N, F2 : V2 → N spherical functors and S1, S2 autoequivalences of
N. Composing with the autoequivalence Fun(∆1, S−1

2 ) of V3
0N replaces S1 by S−1

2 S1
and S2 by idN. Up to equivalence of perverse schobers, we may thus assume that
S2 = idN. The equivalence class of the perverse schober F is hence determined by
the functors F1, F2, and an autoequivalence S1 of N. The choice of S1 affects the
monodromy of F along a clockwise loop wrapping one around the first singularity
by conjugation with S1, since the cotwist functor of S1F1 ⊣ radj(F1)S−1

1 is given by
S1TNS

−1
1 , with TN the cotwist of F1 ⊣ radj(F1).

Let k be a field with char(k) = 0. We choose F1 = ϕ∗ : D(k) → D(k[t2]) with
ϕ the morphism of dg-algebras k[t2] t2 7→0−−−→ k, see Section 5.2 for more details. The
cotwist is then equivalent to TN ≃ [3], see Proposition 5.12. For this particular
choice of F1, we may thus choose S1 arbitrarily without affecting the monodromy
of F. The choices S1 = idN and S1 the pullback along k[t2] t2 7→−t2−−−−→ k[t2] clearly give
rise to two non-equivalent perverse schobers.
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4 Relative Calabi–Yau structures
In this section, we extend the notion of a relative Calabi–Yau structure defined for
dg-categories in [BD19] to R-linear∞-categories, where R is any E∞-ring spectrum.
A motivating example is the 1-periodic topological Fukaya category of a marked
surface, which carries a relative weak right 2-Calabi–Yau structure as a smooth and
proper k[t±2 ]-linear ∞-category. Here, k[t±2 ] denotes the graded Laurent algebra, so
that D(k[t±2 ]) is the derived ∞-category of 2-periodic chain complexes. We further
discuss the construction of relative Calabi–Yau structures on the ∞-categories of
global sections of perverse schobers.

We begin in Section 4.1 by recalling the notions of duality for bimodules, basics
about smooth and proper R-linear∞-categories, and R-linear Hochschild homology.
Section 4.2 proceeds with defining weak left and right R-linear relative Calabi–Yau
structures and an extension of the gluing results for relative Calabi–Yau structure
of [BD19] to the R-linear setting.

In Section 4.3, we give construct relative Calabi–Yau structures on the sections
of perverse schobers, both locally and globally. A main result is a construction of
a relative Calabi–Yau structure on the ∞-category of global sections of a locally
constant perverse schober with trivial monodromy and a Calabi–Yau generic stalk.

In Section 4.4, we show that relative Calabi–Yau structures give rise to Frobenius
exact ∞-categories, whose extriangulated homotopy 1-categories are 2-Calabi–Yau.

4.1 Bimodules and Hochschild homology
The goal of this section, is to review background material on the duality of bi-
modules, smooth and proper ∞-categories and Hochschild homology over an arbi-
trary base E∞-ring spectrum R. Most of this material appears in a similar form
in [Lur17,HSS17,Lur18,BD19,BD21].

4.1.1 Bimodules

We fix a base E∞-ring spectrum R. Suppose we are given two R-linear ring spec-
tra A,A′. The ∞-category of A-A′-bimodules ABModA′ is equivalent to the ∞-
category LinR(RModA,RModA′) of R-linear functors between the respective module
∞-categories, see [Lur17, 4.8.4.1, 4.3.2.7]. In terms of functors, left and right duals
of bimodules (if they exist) correspond to left and right adjoints of the corresponding
functors.

Let C be a compactly generated R-linear ∞-category. Recall that we denote
by C∨ = Ind(Cc,op) its dual in the symmetric monoidal ∞-category LinCatR, see
Section 2.1.2. We have evaluation and coevaluation functors evC : C∨⊗C→ RModR,
coevC : RModR → C⊗ C∨, see again Section 2.1.2.

Remark 4.1. Given a compact objects preserving R-linear functor F : C → D

between compactly generated R-linear ∞-categories, we denote by F∨ := Ind(f op)
the functor on Ind-completions arising from the opposite functor of its restriction to
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compact objects f : Cc → Dc. We note that if F admits a left adjoint ladj(F ), then
the right adjoint of F∨ is given by radj(F∨) ≃ ladj(F )∨.

We are especially interested in the adjoints of functors C ⊗ C∨ → RModR or
RModR → C⊗ C∨. This corresponds as a special case to studying modules over the
enveloping algebra Ae = A⊗R Arev of some R-linear ring spectrum A. We have the
following equivalences.

Lemma 4.2.

(1) The R-linear functor ΦC, defined as

LinR(C∨ ⊗ C,RModR) idC ⊗(-)−−−−→ LinR(C⊗ C∨ ⊗ C,C) (-)◦(coevC ⊗ idC)−−−−−−−−−→ LinR(C,C) ,

is an equivalence with inverse Φ−1
C given by

LinR(C,C) idC∨ ⊗(-)−−−−−→ LinR(C∨ ⊗ C,C∨ ⊗ C) evC ◦(-)−−−−→ LinR(C∨ ⊗ C,RModR) .

(2) The R-linear functor ΨC, defined as

LinR(RModR,C⊗ C∨) (-)⊗idC−−−−→ LinR(C,C⊗ C∨ ⊗ C) idC ⊗ evC ◦(-)−−−−−−−→ LinR(C,C) ,

is an equivalence with inverse Ψ−1
C given by

LinR(C,C) (-)⊗idC∨−−−−−→ LinR(C⊗ C∨,C⊗ C∨) (-)◦coevC−−−−−→ LinR(RModR,C⊗ C∨) .

Proof. We begin by proving part (1). The equivalence of ∞-categories

LinR(C,C) LinR(C∨,Y)−−−−−−→ LinR(C,LinR(C∨,RModR)) ≃ LinR(C∨ ⊗ C,RModR) ,

where Y denotes the R-linear Yoneda embedding, maps an endofunctor X : C→ C to
evC ◦(idC∨ ⊗X). This shows that Φ−1

C is essentially surjective. The triangle identity
for evC and coevC implies that ΦC ◦Φ−1

C ≃ idLinR(C,C). It follows that Φ−1
C is faithful,

and in fact a split inclusion on Hom spaces. Using that all objects Y ∈ LinR(C∨ ⊗
C,RModR) are of the form Y ≃ evC ◦(idC∨ ⊗X), we find Φ−1

C ◦ ΦC(Y ) ≃ Y . Using
that ΦC and Φ−1

C are exact, we find that Φ−1
C is also full, showing that Φ−1

C is an
equivalence. Since ΦC ◦ Φ−1

C ≃ idLinR(C,C), the inverse of Φ−1
C is given by ΦC.

For part (2), a similar argument as above applies, using that the equivalence of
∞-categories

LinR(C,C) ≃ LinR(RModR,LinR(C,C)) ≃ LinR(RModR,C⊗ C∨)

maps a functor X : C→ C to (X ⊗ idC∨) ◦ coevC.

Notation 4.3. We denote by τ the R-linear equivalence C ⊗ C∨ ≃ C∨ ⊗ C which
permutes the factors.
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We can use the equivalences ΦC and ΨC to define the dual of an R-linear endo-
functor C→ C, considered as a functor C∨ ⊗ C→ RModR or RModR → C⊗ C∨.

Definition 4.4. Let X ∈ LinR(C,C) be an R-linear endofunctor.

1. We call X left dualizable if Φ−1
C (X) admits a left adjoint. In this case, we call

X ! := ΨC(τ ◦ ladj(Φ−1
C (X))) ∈ LinR(C,C)

the left dual of X.

2. We call X right dualizable if Φ−1
C (X) admits a right adjoint. In this case, we

call
X∗ := ΨC(τ ◦ radj(Φ−1

C (X))) ∈ LinR(C,C)
the right dual of X.

Lemma 4.5. Let X ∈ LinR(C,C).

(1) If X is left dualizable, then

X ! ≃ ΦC(τ ◦ radj(Ψ−1
C (X))) .

(2) If X is right dualizable, then

X∗ ≃ ΦC(τ ◦ ladj(Ψ−1
C (X))) .

Proof. Part (1) follows from Lemma 4.6 below and the observation that

LinR(Φ−1
C (X),RModR) ⊣ LinR(ladj(Φ−1

C (X)),RModR) .

Part (2) follows from a similar argument.

Lemma 4.6. Let X ∈ LinR(C,C). There is a commutative diagram,

RModR C⊗ C∨ RModR

LinR(RModR,RModR) LinR(C∨ ⊗ C,RModR) LinR(RModR,RModR)

Ψ−1
C

(X)

Y Y

Φ−1
C∨ (X)

Y

LinR(Φ−1
C

(X),RModR) LinR(Ψ−1
C

(X),RModR)

with Y the R-linear Yoneda embedding, see Definition 2.6.

Proof. The evaluation bimodule

evC⊗C∨ : C∨ ⊗ C⊗ C⊗ C∨ ≃ (C⊗ C∨)∨ ⊗ C⊗ C∨ −→ RModR

is, after reordering the factors of the tensor product, given by the tensor product of
the evaluation bimodules of C and C∨. Note that these two evaluation bimodules
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are themselves equivalent, up to composition with τ : C⊗C∨ ≃ C∨⊗C. The Yoneda
embedding

Y : LinR(RModR,C⊗ C∨) ≃ C⊗ C∨ → LinR(C∨ ⊗ C,RModR)

is thus given by the functor

(evC⊗ evC) ◦ (idC∨ ⊗(-)⊗ idC) . (44)

Using this, the commutativity follows from the triangle identities for the evaluation
and coevaluation bimodules, as well as the equivalences

Ψ−1
C (X) ≃ (X ⊗ idC∨) ◦ coevC ,

Φ−1
C∨ (X) ≃ evC∨ ◦(X ⊗ idC∨) ,

LinR(Φ−1
C (X),RModR) ≃ (-) ◦ evC∨ ◦(X ⊗ idC∨) ,

LinR(Ψ−1
C (X),RModR) ≃ (-) ◦ (X ⊗ idC∨) ◦ coevC .

Remark 4.7. We denote by Linld
R(C,C) ⊂ LinR(C,C) the stable subcategories of

left dualizable functors. We similarly denote by Linrd
R ((C,C) ⊂ LinR(C,C) the stable

subcategory of right dualizable functors. Since passing to adjoints can be made
functorial, see [Lur09, 5.2.6.2], we have exact functors

(-)! : Linld
R(C,C)→ LinR(C,C)op

and
(-)∗ : Linrd

R (C,C)→ LinR(C,C)op .

Concretely, we find that Linld
R(C,C) = LinR(C,C)c is given by the subcategory of

compact objects. This follows from the adjoint functor theorem and the observation
that a compact object in

C⊗ C∨ Y≃ LinR(C∨ ⊗ C,RModR) ≃ LinR(C,C)

gives via the Yoneda embedding rise to an exact functor C∨⊗C→ RModR which also
preserves filtered limits, and hence all limits. An endofunctor is right dualizable if
and only if its image under Φ−1

C in LinR(C∨⊗C,RModR) preserves compact objects,
since in this case the right adjoint preserves colimits and is thus R-linear.

For the following, we fix a compact objects preserving R-linear functor F : C→ D

between compactly generated, R-linear ∞-categories. We denote the R-linear right
adjoint of F by G : D→ C.
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Lemma 4.8. (1) There exists a commutative diagram

LinR(RModR,C⊗ C∨) LinR(C,C)

LinR(RModR,D⊗D∨) LinR(D,D)

(F⊗F∨)◦(-)

ΨC

F◦(-)◦G

ΨD

In particular, it follows that the R-linear functor

F! := F ◦ (-) ◦G : LinR(C,C)→ LinR(D,D)

preserves compact objects.

(2) There exists a commutative diagram

LinR(D∨ ⊗D,RModR) LinR(D,D)

LinR(C∨ ⊗ C,RModR) LinR(C,C)

(-)◦(F∨⊗F )

ΦD

G◦(-)◦F

ΦC

In particular, it follows that the R-linear functor

F ∗ := G ◦ (-) ◦ F : LinR(D,D)→ LinR(C,C)

preserves compact objects.

Proof. We only prove part (1), part (2) is analogous. The adjunction F ⊣ G implies
that

evD ◦(F∨ ⊗ idD) ≃ evC ◦(idC∨ ⊗ G) .
It follows that

ΨD((F ⊗ F∨) ◦ α) ≃ (idD⊗ evD) ◦ (F ⊗ F∨ ⊗ idD) ◦ (α⊗ idD)
≃ (idD⊗ evC) ◦ (F ⊗ idD∨ ⊗ G) ◦ (α⊗ idD)
≃ F ◦ΨC(α) ◦G ,

functorial in α : RModR → C⊗ C∨.

4.1.2 Smooth and proper linear ∞-categories

We fix an E∞-ring spectrum R and an R-linear ∞-category C.

Definition 4.9.

(1) The ∞-category C is called smooth if it is compactly generated and idC ∈
LinR(C,C) is left dualizable. In this case, the bimodule left dual id!

C is also
called the inverse dualizing bimodule.
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(2) The ∞-category C is called proper if it is compactly generated and for any two
compact objects x, y ∈ Cc the R-linear morphism object MorC(x, y) ∈ RModR
is compact. Since MorC(x, y) ≃ Φ−1

C (idC)(x ⊗ y), C being proper equivalent to
the functor idC being right dualizable.

In the following, we suppose that C is compactly generated. We denote (-)∗ =
MorRModR(-, R) : (RModc

R)op → RModc
R

Definition 4.10. Suppose that C is proper. We call an endofunctor U ∈ LinR(C,C)
a Serre functor of C if there exists a natural equivalence

MorC(-1, -2) ≃ MorC(-2, U(-1))∗ : Cc,op × Cc → RModc
R .

Lemma 4.11. Let U,U ′ be two Serre functors of C. Then U ≃ U ′ ∈ LinR(C,C).

Proof. Since U and U ′ are both Serre functors, there exist natural equivalences

MorC(-1, U(-2)) ≃ MorC(-2, -1)∗ ≃ MorC(-1, U
′(-2)) .

Applying MapRModR(R, -) to this equivalence yields

MapC(-1, U(-2)) ≃ MapC(-1, U
′(-2)) .

It follows that U ≃ U ′ on compact objects by (a corollary of) the Yoneda lemma,
see for instance [Cis19, Cor. 5.8.14]. Passing to Ind-completions shows U ≃ U ′.

Lemma 4.12.

(1) Suppose that C is proper. The right dual id∗
C is a Serre functor of C.

(2) Suppose that C is smooth and proper. The functors id∗
C and id!

C are inverse
equivalences.

Remark 4.13. Part (1) of Lemma 4.12 is stated without proof in [Lur18, 11.1.5.2].

Proof of Lemma 4.12. We begin by proving part (1). We denote by

M̂orC(-, -) : C∨ × C→ RModR

the functor obtained by passing to Ind-completions from the restriction of MorC(-, -)
to Cc,op × Cc. Let X ∈ Cc and consider the adjunction

(-)⊗ M̂orC(X, -) : RModR ←→ LinR(C,RModR) :MorLinR(C,RModR)(M̂orC(X, -), -) .

Using that M̂orC(X, -) ≃ M̂orC∨(-, X) and the fully faithfulness of the R-linear
Yoneda embedding of C∨, we find that the right adjoint is given by evaluation at X,
i.e.

MorLinR(C,RModR)(M̂orC(X, -), -) ≃ evX .
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Using the identification

LinR(C,RModR)⊗ LinR(C∨,RModR) ≃ LinR(C⊗ C∨,RModR)

we define the functor

ev′
X : LinR(C⊗ C∨,RModR)

evX ⊗ idLinR(C∨,RModR)−−−−−−−−−−−−−−→ LinR(C∨,RModR)

with left adjoint

ladj(ev′
X) : LinR(C∨,RModR)

(
(-)⊗M̂orC(X,-)

)
⊗id

−−−−−−−−−−−−→ LinR(C⊗ C∨,RModR) .

Informally, the left adjoint ladj(ev′
X) is given by

(c′ 7→ F (c′)) 7→
(
(c⊗ c′) 7→ M̂orC(X, c)⊗ F (c′)

)
.

The right adjoint of the evaluation bimodule evC : C∨⊗C→ RModR is equivalent
to (idC∨ ⊗ id∗

C) ◦ coevC∨ . Using the description the the Yoneda embedding in (44), it
follows that the right adjoint of the functor

ẽv : LinR(C⊗ C∨,RModR) ≃ C∨ ⊗ C
evC−−→ RModR

is equivalent to (-)⊗ evC∨ ◦(id∗
C⊗ idC∨).

In total, we obtain that the right adjoint of

LinR(C∨,RModR) ladj(ev′
X)

−−−−−→ LinR(C⊗ C∨,RModR) ẽv−−→ RModR

is given by (-)⊗M̂orC(-, id∗
C(X)). To make the notation more transparent, we denote

Mor′
C(-, -) = evC : (C∨⊗C)c → RModR and Mor′

C∨(-, -) = evC∨ : (C⊗C∨)c → RModR
in the following. Using the above adjunctions, the fully faithfulness of the R-linear
Yoenda embedding and Lemma 2.7, we find the following equivalences in RModR,
functorial in X ⊗ Y ∈ (C⊗ C∨)c,

Mor′
C(X, Y )∗ = MorRModR(Mor′

C(X, Y ), R)
≃MorRModR(ẽv ◦ ladj(ev′

X)(M̂orC(-, Y )), R)
≃MorLinR(C⊗C∨,RModR)(ladj(ev′

X)(M̂orC(-, Y )),Mor′
C(-, id∗

C(-)))
≃MorLin(C∨,RModR)(M̂orC(-, Y ), M̂orC(-, id∗

C(X)))
≃Mor′

C(Y, id∗
C(X)) .

Restricting the above equivalence of functors along Cc × Cc,op → (C ⊗ C∨)c shows
that that id∗

C is indeed a Serre functor.
We proceed with proving part (2). We have

idC ≃ (idC⊗ evC) ◦ (coevC⊗ idC) (45)
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and passing to the right adjoint yields

idC ≃ (radj(coevC)⊗ idC) ◦ (idC⊗ radj(evC)) .

We have
radj(evC) ≃ (idC∨ ⊗ id∗

C) ◦ coevC∨

and by Lemma 4.5 further

radj(coevC) ≃ evC∨ ◦(id!
C⊗ idC∨) .

Combining the above equivalences yields id∗
C ◦ id!

C ≃ idC. The identity id!
C ◦ id∗

C ≃ idC

arises from a similar argument by passing to the left adjoint of (45).

Definition 4.14. Given a compactly generated R-linear ∞-category C, we denote
by Cfin ⊂ C the full subcategory of objects Y , satisfying that MorC(X, Y ) ∈ RModc

R

is compact for all X ∈ Cc.

The following lemma provides the analog of part (1) of Lemma 4.12 for smooth,
but not necessarily proper R-linear ∞-categories.

Lemma 4.15. Let C be a smooth R-linear ∞-category. Then

MorC(X, Y )∗ ≃ MorC(id!(Y ), X) ,

functorial in X ∈ Cc and Y ∈ (Cfin)op.

Proof of Lemma 4.15. The exact inclusion Cfin ⊂ C gives rise to an R-linear functor
IndCfin → C. The R-linear functor

evfin
C : C∨ ⊗ IndCfin −→ C∨ ⊗ C

evC−−→ RModR

preserves compact objects by the definition of Cfin and thus admits an R-linear right
adjoint radj(evfin

C ). We define the R-linear functor U : C→ IndCfin as the composite

C
C⊗radj(evfin

C
)

−−−−−−−→ C⊗ C∨ ⊗ IndCfin evC ⊗ idInd Cfin−−−−−−−−→ IndCfin .

The functor U admits a left adjoint, given by the composite

IndCfin ladj(evC)⊗idInd Cfin−−−−−−−−−−−→ C⊗ C∨ ⊗ IndCfin idC ⊗ evfin
C−−−−−−→ C ,

which describes the restriction of id!
C along the R-linear functor IndCfin → C.

A very similar proof as for part (1) of Lemma 4.12 shows that

MorC(X, Y )∗ ≃ MorC(Y, U(X)) , (46)

functorial in Y ∈ Cfin,op and X ∈ Cc. By the above adjunction, we have

MorC(Y, U(X)) ≃ MorC(id!
C(Y ), X)),

which combined with (46) yields the desired equivalence.
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4.1.3 Hochschild homology

Let R be an E∞-ring spectrum and C a compactly generated R-linear ∞-category.
The R-linear Hochschild homology of C is defined as the trace

HH(C) := evC ◦ τ ◦ coevC(R) ∈ RModR .

When R is the sphere spectrum, HH(C) describes topological Hochschild homology.
When R = k is a field, HH(C) describes the usual k-linear Hochschild homology.

Lemma 4.16. Let C be a compactly generated R-linear ∞-category.

(1) If C is smooth, then HH(C) is canonically equivalent to

MorLinR(C,C)(id!
C, idC) .

(2) If C is proper, then HH(C)∗ = MorRModR(HH(C), R) is canonically equivalent to

MorLinR(C,C)(idC, id∗
C) .

Proof. Suppose that C is smooth. Then we have an adjunction

ladj(evC) ◦ (-) : LinR(RModR,C∨ ⊗ C)←→ LinR(RModR,RModR) :evC ◦(-) ,

whose unit is given by precomposition with the unit of ladj(evC) ⊣ evC. It follows
that

MorLinR(C,C)(id!
C, idC) ≃MorLinR(RModR,C⊗C∨)(τ ◦ ladj(evC), coevC)

≃MorRModR(R, evC ◦τ ◦ coevC)
≃HH(C) .

If C is a proper, a similar argument applies.

Remark 4.17. Let C be smooth. If we make two different choices of left du-
als/adjoints

id!
C = ΨC(ladj(evC)) , (id!

C)′ = ΨC(ladj(evC)′)
and two choices of units, there is a contractible space of equivalences α : (id!

C)′ ≃ id!
C,

compatible with the unit, see [Cis19, Prop. 6.1.9]. Any such equivalence α assembles
with the equivalences from Lemma 4.16 into to a commutative diagram as follows:

MorLinR(C,C)(id!
C, idC) MorLinR(C,C)((id!

C)′, idC)

HH(C)
≃

MorLinR(C,C)(α,idC)

≃

Stated differently, this means that the equivalence in part (1) of Lemma 4.16 is
independent of the choice of left dual. A similar statement holds for the equivalence
in part (2).
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One can use the formalism of traces to turn R-linear Hochschild homology into
a functor HH(-) : LinCatcpt

R → RModR defined on the subcategory LinCatcpt
R ⊂

LinCatR of compactly generated∞-categories and compact objects preserving func-
tors, see [HSS17]. We adopt a more explicit approach to describe a weaker version
of this functoriality, which is suited for the purposes of this work. We expect the
approach of [HSS17] to restrict to our approach, but do not prove this here. The
description of HH(-) used here also appears for smooth dg-categories in [BD21,
Prop. 4.4].

Construction 4.18. Let F : C → D be an R-linear compact objects preserving
functor between compactly generated R-linear ∞-categories and G the R-linear
right adjoint of F .
Case 1: Suppose that C,D are smooth.

We denote by

F!(-) = F ◦ (-) ◦G : LinR(C,C) −→ LinR(D,D)

the functor from Lemma 4.8, and by cu: F!(idC)→ idD the counit transformation of
F ⊣ G. We define the unit u: id!

D → F!(id!
C) as the image under ΨD of the natural

transformation

ladj(evD)→ ladj(evD) ◦ evC ◦ ladj(evC)
→ ladj(evD) ◦ evD ◦(F ⊗ F∨) ◦ ladj(evC)
→ (F ⊗ F∨) ◦ ladj(evC)

composed with the equivalence

ΨD((F ⊗ F∨) ◦ ladj(evC)) ≃ F!(id!
C)

from Lemma 4.8. The transformation u is indeed a unit if F admits a left adjoint,
see Lemma 4.21.

We define the morphism HH(F ) in RModR as

HH(F ) := cu ◦F!(-) ◦ u: MorLinR(C,C)(id!
C, idC) −→ MorLinR(D,D)(id!

D, idD) .

Explicitly, HH(F ) maps a degree m-morphism α : id!
C → idC[m] to the morphism

id!
D → idD[m] obtained as the following composite:

id!
D F!(id!

C)

F!(idC)[m] idD[m]

u

F!(α)

cu[m]

Case 2: Suppose that C,D are proper.
Consider the functor

F ∗(-) = G ◦ (-) ◦ F : LinR(D,D) −→ LinR(C,C)
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from Lemma 4.8 and denote by u: idC → F ∗(idD) the unit of F ⊣ G. Let E∨ denote
the right adjoint of F∨. Applying Ψ−1

D∨ to the counit F∨E∨ → idD defines a natural
transformation

(F∨ ⊗ F ) ◦ coevC∨ −→ coevD∨ .

We use this to define the counit cu : F ∗(id∗
D) → id∗

C as the image under ΦC of the
natural transformation

ladj(coevD∨) ◦ (F∨ ⊗ F )→ ladj(coevD∨) ◦ (F∨ ⊗ F ) ◦ coevC∨ ◦ ladj(coevC∨)
→ ladj(coevD∨) ◦ coevD∨ ◦ ladj(coevC∨)
→ ladj(coevC∨)

composed with the identification ΦC(ladj(coevD∨) ◦ (F∨ ⊗ F )) ≃ F ∗(id∗
D) from

Lemma 4.8. We define the morphism HH∗(F ) in RModR as

HH∗(F ) := cu ◦F ∗(-) ◦ u: MorLinR(D,D)(idD, id∗
D) −→ MorLinR(C,C)(idC, id∗

C) .

The notation HH∗(F ) emphasizes that HH∗(F ) is not manifestly the dual of HH(F ).

Lemma 4.19. The assignments from Construction 4.18 define functors between
homotopy 1-categories

HH(-) : ho LinCatcpt,sm
R −→ ho RModR

and
HH∗(-) : ho

(
LinCatcpt,prop

R

)op
−→ ho RModR .

Here, LinCatcpt,sm
R ,LinCatcpt,prop

R ⊂ LinCatcpt
R denote the full subcategories consisting

of smooth, respectively, proper R-linear ∞-categories.

Proof. We only prove part (1), a similar proof applies to part (2). Consider compact
objects preserving, R-linear functors F1 : C → D and F2 : D → E between smooth
R-linear∞-categories. By construction of HH(-), it suffices to show that composing
the units u2 : id!

E → (F2)! id!
D and (F2)! ◦ u1 : (F2)! id!

D → (F2)!(F1)! id!
C yields the

unit u : id!
E → (F2F1)! id!

C ≃ (F2)!(F1)! id!
C. This is straightforward to verify using

the commutativity of the following diagram,

evL
E

◦ evC ◦ evL
C

evL
E

◦ evD ◦(F∨
1 ⊗ F1) ◦ evL

C

evL
E

◦ evD ◦ evL
D

◦ evC ◦ evL
C

evL
E

◦ evD ◦ evL
D

◦ evD ◦(F∨
1 ⊗ F1) ◦ evL

C

evL
E

◦ evE ◦(F∨
2 ⊗ F2) ◦ evL

D
◦ evC ◦ evL

C
evL

E
◦ evE ◦(F∨

2 ⊗ F2) ◦ evL
D

◦ evD ◦(F∨
1 ⊗ F1) ◦ evL

C
evL

E
◦ evC ◦(F∨

2 F
∨
1 ⊗ F2F1) ◦ evL

C

where we denote for brevity evLE = ladj(evE), evLD = ladj(evD), evLC = ladj(evC).
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Notation 4.20. Consider an R-linear, compact objects preserving functor F : C→
D.

(1) Suppose that C,D are smooth. We denote HH(D,C) = cof HH(F ).

(2) Suppose that C,D are proper. We denote HH∗(D,C) = cof HH∗(F ).

Lemma 4.21. Let F : C → D be a compact objects preserving R-linear functor
which admits a left adjoint E.

(1) Suppose that C,D are smooth. Then there exists a natural equivalence F!(id!
C) ≃

FE id!
D, such that the composite of

u: id!
D → F!(id!

C)

with this equivalence describes a unit of E ⊣ F composed with id!
D.

(2) Suppose that C,D are proper. Then there exists a natural equivalence F ∗(id∗
D) ≃

id∗
CEF , such that the composite of

cu : F ∗(id∗
D)→ id∗

C

with this equivalence describes a counit of E ⊣ F composed with id∗
C.

Proof. We only prove part (1), part (2) is similar. The adjunction E ⊣ F implies
that

evC ◦(E∨ ⊗ idC) ≃ evD ◦(idD∨ ⊗F ) .
The units of the adjunctions

(F∨ ⊗ idC) ◦ ladj(evC) ⊣ evC ◦(E∨ ⊗ idC)

and
(idD∨ ⊗E) ◦ ladj(evD) ⊣ evD ◦(idD∨ ⊗F )

are hence equivalent. This gives rise to the following commutative diagram:

idRModR evC ◦ ladj(evC) evC ◦(E∨F∨ ⊗ idC) ◦ ladj(evC)

evD ◦ ladj(evD) evD ◦(idD∨ ⊗FE) ◦ ladj(evD) evD ◦(F∨ ⊗ F ) ◦ ladj(evC)

≃

≃

The naturality of the unit idD∨ ⊗ idD → idD∨ ⊗FE and the counit ladj(evD) evD →
idD∨ ⊗ idD gives rise to the following commutative diagram:

ladj(evD) evD ladj(evD) ladj(evD)

ladj(evD) evD(idD∨ ⊗FE) ladj(evD) (idD∨ ⊗FE) ladj(evD)
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Combining these two diagrams, we find that the natural transformation u : id!
D →

F!(id!
C) is equivalent to the image under ΨD of the natural transformation

ladj(evD)→ ladj(evD) evD ladj(evD)
→ ladj(evD)
→ (idD∨ ⊗FE) ladj(evD)
≃ (F∨ ⊗ F ) ladj(evC) .

The desired description of u follows via the triangle identity for the adjunction
ladj(evD) ⊣ evD.

4.2 Relative Calabi–Yau structures
The goal of this section is to introduce and study R-linear weak relative Calabi–Yau
structures. We begin in Sections 4.2.1 and 4.2.2 with their definition. We then de-
scribe the behavior of Calabi–Yau structures under tensor products in Section 4.2.3
and generalize the gluing properties of relative Calabi–Yau structures of [BD19] to
the R-linear setting in Section 4.2.4. Finally, we describe two basic examples of
∞-categories with relative Calabi–Yau structures in Section 4.2.5, which will later
be used to construct relative Calabi–Yau structures on relative Ginzburg algebras
and 1-periodic topological Fukaya categories.

4.2.1 Left Calabi–Yau structures

Let R be an E∞-ring spectrum and let F : C→ D be a compact objects preserving,
R-linear functor between smooth R-linear ∞-categories. By Construction 4.18, an
R-linear relative Hochschild class σ : R[n]→ HH(D,C) amounts to a diagram

id!
D F!(id!

C)

F!(idC)[1− n] idD[1− n]

u

cu[1−n]

together with a choice of null-homotopy of the composite id!
D → idD[1−n]. It hence

gives rise to a diagram with horizontal fiber and cofiber sequences as follows:

id!
D F!(id!

C) cof

fib F!(idC)[1− n] idD[1− n]

u

cu[1−n]

(47)

We call the Hochschild class σ non-degenerate if all vertical maps in the diagram
(47) are equivalences.
Definition 4.22. An (R-linear) weak left n-Calabi–Yau structure on the functor F
consists of a non-degenerate Hochschild class σ : R[n] → HH(D,C). If F = 0, we
also say that D carries a weak left n-Calabi–Yau structure.
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Weak left n-Calabi–Yau structures are also sometimes called bimodule Calabi–
Yau structures.

Remark 4.23. The notion of weak left Calabi–Yau structure on a functor F only
depends on the functor and the relative Hochschild class and not on any further
choices made in its definition. These include choices of adjoints and (co)unit, for
instance the choice of right adjoint of F together with the counit, of which there
each exists a contractible space of choices. Inspecting the definition one finds that
making a different choice yields an equivalent diagram in (47) and thus the same
condition of the Hochschild class being non-degenerate.

4.2.2 Right Calabi–Yau structures

Let R be an E∞-ring spectrum and let F : C→ D be a compact objects preserving,
R-linear functor between proper R-linear ∞-categories. By Construction 4.18, an
R-linear dual relative Hochschild class σ : R[n]→ HH∗(D,C) amounts to a diagram

idD F ∗(idD)

F ∗(id∗
D)[1− n] id∗

C[1− n]

u

cu[1−n]

together with a choice of null-homotopy of the composite idD → id∗
D[1−n]. It hence

gives rise to a diagram with horizontal fiber and cofiber sequences as follows:

idD F ∗(idD) cof

fib F ∗(id∗
D)[1− n] id∗

C[1− n]

u

cu[1−n]

We call the dual Hochschild class σ non-degenerate if all vertical maps in the above
diagram are equivalences.

Definition 4.24. Am (R-linear) weak right n-Calabi–Yau structure on the functor
F consists of a non-degenerate dual Hochschild class σ : R[n] → HH(D,C)∗. If
D = 0, we also say that C carries a weak right n-Calabi–Yau structure.

Remark 4.25. A weak right n-Calabi–Yau structure on C equivalently consists of
an equivalence in RModR

MorC(X, Y ) ≃ MorC(Y,X[n])∗ ,

bifunctorial in X, Y ∈ Cc.
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4.2.3 Behavior under tensor products

Lemma 4.26. Let C,D be R-linear ∞-categories. There is a canonical equivalence

HH(C)⊗ HH(D) ≃ HH(C⊗D) .

Proof. Using that evC⊗D ≃ evC⊗ evD and coevC⊗D ≃ coevC⊗ coevD, we find

HH(C⊗D) = evC⊗D ◦τ ◦ coevC⊗D(R)
≃ (evC⊗ evD) ◦ τ ◦ (coevC⊗ coevD)(R)
≃ (evC ◦τ ◦ (coevC)(R)⊗ (evD ◦τ ◦ coevD)(R)
= HH(C)⊗ HH(D) .

Remark 4.27. If C,D are smooth, we have id!
C⊗D ≃ id!

C⊗ id!
D. A pair of mor-

phisms α : id!
C → idC[−n], β : id!

D → idD[−m] gives under the identifications from
Lemmas 4.16 and 4.26 rise to the morphism

id!
C⊗D ≃ id!

C⊗ id!
D

α⊗β−−→ idC[−n]⊗ idD[−m] ≃ idC⊗D[−n−m] .

The tensor product of a Calabi–Yau functor with a Calabi–Yau category is thus
again Calabi–Yau:

Proposition 4.28. Let C,D,E be R-linear smooth ∞-categories and F : C → D a
compact objects preserving R-linear functor

(1) Let σ : R[n] → HH(D,C) and σ′ : R[m] → HH(E) be weak left Calabi–Yau-
structures on F and E, respectively. The class

R[n+m] ≃ R[n]⊗R[m] σ⊗σ′
−−−→ HH(D,C)⊗ HH(E)→ HH(D⊗ E,C⊗ E)

defines a weak left n+m-Calabi–Yau structure on

F ⊗ E : D⊗ E→ C⊗ E .

(2) Let σ : R[n] → HH∗(D,C) and σ′ : R[m] → HH(E)∗ be weak right Calabi–Yau-
structures on F and E, respectively. The class

R[n+m] ≃ R[n]⊗R[m] σ⊗σ′
−−−→ HH∗(D,C)⊗ HH(E)∗ → HH∗(D⊗ E,C⊗ E)

defines a weak right n+m-Calabi–Yau structure on

F ⊗ E : D⊗ E→ C⊗ E .
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Proof. We only prove part (1), part (2) is analogous. The class R[n+m]→ HH(D⊗
E,C⊗E) gives rise to the following diagram in LinR(D⊗E,C⊗E), up to equivalence.

id!
D⊗ id!

E F!(id!
C)⊗ id!

E cof ⊗ id!
E

fib⊗ idE[m] F!(idC)[1− n]⊗ idE[−m] idD[1− n]⊗ idE[−m]

The horizontal sequences in the above diagram are fiber and cofiber sequences as
tensor products of such with id!

E or idE[m]. The vertical maps are equivalences as
tensor products of equivalences, showing the non-degeneracy of the class.

4.2.4 Gluing Calabi–Yau structures

In this section, we discuss a generalization of the gluing theorem for left Calabi–
Yau structures on k-linear dg-categories of [BD19, Theorem 6.1] to weak left and
right Calabi–Yau structures on R-linear ∞-categories. The gluing theorem boils
down to a simple description of objects in pullbacks/pushouts of stable, presentable
∞-categories in terms of their restrictions, see Lemma 4.30.

Consider the cospan simplicial set Z = ∆{0,1}⨿∆{0} ∆{0,1′} with objects 0, 1, 1′ and
two non-degenerate 1-simplicies 0→ 1, 1′. We fix a diagram D : Z → LinCatR with
colimit C, satisfying that D maps each morphism to a compact objects preserving
functor. For z ∈ Z, we denote Cz = D(z). Let further iz : Cz → C denote the functor
from the colimit cone, jz = radj(iz) its right adjoint, and cuz the counit of iz ⊣ jz.

The fact that counits compose to counits provides us with a commutative square

ϕD : Z▷ → LinR(C,C)

which can be depicted as follows:

i0j0 i1j1

i1′j1′ idC

cu0 cu1

cu1′

Proposition 4.29. The square ϕD : Z▷ → LinR(C,C) is biCartesian.

Proof. Using that the forgetful functor LinR(C,C) → Fun(C,C) is exact and that
colimits in functor categories are computed pointwise, see [Lur09, 5.1.2.3], the state-
ment reduces to Lemma 4.30.

Lemma 4.30. Let c ∈ C and consider the diagram

ϕc : Z▷ → C ,

given by evaluating ϕD at c. Then ϕc describes a biCartesian square in C.
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Proof. We can identify the colimit C of D with the ∞-category of coCartesian sec-
tions of the Grothendieck construction π : Γ(radj(D)) → Zop of the diagram ob-
tained from D by passing to right adjoint functors. Denote by L the ∞-category
of all sections of π and by κ : C ↪→ L the fully faithful inclusion with left adjoint
ζ. For z ∈ Z, we denote by j̃z : L→ Cz the evaluation functor at z, satisfying that
j̃z ◦ κ ≃ jz. The left adjoint of j̃z is denoted ĩz, it satisfies ζ ◦ ĩz = iz. An object
c ∈ C corresponding to a coCartesian section of π is of the form

c1 c1′

c0

with ci ∈ Ci. By [Lur09, 4.3.2.17], ĩz is given by the π-relative left Kan extension
functor and the objects ĩzjz(c), z ∈ Z are hence given as follows.

ĩ0j0(c) ≃
0 0

c0

ĩ1j1(c) ≃
c1 0

c0

ĩ1′j1′(c) ≃
0 c1′

c0

These assemble into a square ϕ̃c in L of the form

ĩ0j0(c) ĩ1j1(c)

ĩ1′j1′(c) c

which restricts at 0 ∈ Z to the constant diagram with value c0, up to equivalence,
and at i = 1, 1′ ∈ Z to the fiber sequence of the map ci → 0 in Ci. Using that limits
in the ∞-category L of sections of the Grothendieck construction are computed
componentwise in Z, it follows that ϕ̃c is a limit diagram in L. Using that ζ : L→ C

is exact, we conclude that ϕc ≃ ζ ◦ ϕ̃c is a limit diagram as well.

Proposition 4.29 implies that R-linear smoothness is preserved under finite colim-
its along compact objects preserving R-linear functors. A variant of this observation
appears for k-linear ∞-categories in [ST16, Lemma 8.21].

Corollary 4.31. Let W be a finite simplicial set and D : W → LinCatR a func-
tor taking values in smooth R-linear ∞-categories and compact objects preserving
functors. The colimit of D is again smooth.
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Proof. Any finite colimit can be computed in terms of a pushout and finite co-
products. Smoothness is clearly preserved under finite coproducts of R-linear ∞-
categories. It remains to check that the pushout of a span of smooth R-linear
∞-categories along compact objects preserving functors is again smooth. This fol-
lows from Lemma 4.30, part (1) of Lemma 4.8 and the fact that pushouts of compact
objects are again compact.

Proposition 4.29 admits a ’dual’ version as follows. Consider a diagramD : Zop →
LinR(C,C) taking values in limit preserving functors. Set C := limD. For z ∈ Z,
consider the adjunction hz ⊣ iz with iz : C → Cz the functor from the limit cone.
Denote by cuz the counit of hz ⊣ iz. We have a diagram ϕD : Z▷ → LinR(C,C),
which can depicted as follows:

h0i0 h1i1

h1′i1′ idC

cu0 cu1

cu1′

An analogue of the proof of Proposition 4.29 shows the following.

Proposition 4.32. The diagram ϕD : Z▷ → LinR(C,C) is a biCartesian square.

The above discussion provides us with the tools needed for proving the gluing
results for Calabi–Yau structures. We turn to the gluing of weak left Calabi–Yau
structures. For this, fix a colimit diagram in LinCatR, valued in smooth∞-categories
and functors which preserve compact objects and limits, of the following form:

B3

B2 C2

B1 C1 D

F3,2

⌜

F2,2

F2,1 F2

F1,1 F1

(48)

We form the following diagram in RModR:

X HH(B2) 0

⊕
i=1,2 HH(Ci,Bi ×Bi+1)[−1] HH(B2)⊕2 HH(B2)

HH(B1)⊕ HH(B3) HH(C1)⊕ HH(C2) HH(D)

□ (id,− id) □

□ HH(F2,1)⊕HH(F2,2)

(id,id)

HH(F1,1)⊕HH(F3,2)

(HH(F1),HH(F2))

The outer square of the above diagram, though not necessarily biCartesian, induces
a morphism X → HH(D,B1 ⊕ B3)[−1]. A class R[n] → X[1] corresponds to two
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classes R[n]→ HH(C1,B1 ×B2),HH(C2,B2 ×B3), whose restrictions to HH(B2)[1]
are not identical, but differ exactly by a reversal of the sign, i.e. composition with
−HH(idB2). In this case, we say that the restrictions of the classes to HH(B2)[1]
are compatible.

Theorem 4.33. Consider two classes σi : R[n]→ HH(Ci,Bi ×Bi+1), with i = 1, 2,
whose restrictions to HH(B2)[1] are compatible and let σ : R[n]→ HH(D,B1×B3) be
the arising class. If σ1 and σ2 are non-degenerate, i.e. define weak left n-Calabi–Yau
structures on the functors

Bi ×Bi+1 −→ Ci ,

then σ is non-degenerate as well and thus defines a weak left n-Calabi–Yau structure
on the functor

B1 ×B3 −→ D .

Proof. For X = B1,B2,B3,C1,C2, denote by iX : X→ D the functor from (48). Let
jX be the right adjoint of iX. Since the restriction of (48) to B2,C1,C2 and D is a
pushout diagram, we find by Proposition 4.29 a biCartesian square in LinR(D,D),
which is depicted as follows.

iB2jB2 iC1jC1

iC2jC2 idD

α1

α2 □ β1

β2

The sequence
iB2jB2

(α1,−α2)−−−−−→ iC1jC1 ⊕ iC2jC2

(β1,β2)−−−−→ idD

is hence a fiber and cofiber sequence.
Using the pasting law for biCartesian squares, this gives rise to the following com-

mutative diagram in LinR(D,D), where all squares are biCartesian and all objects
are compact.

V iB2jB2 0

U iB2jB2 ⊕ iB2jB2 iB2jB2

iB1jB1 ⊕ iB3jB3 iC1jC1 ⊕ iC2jC2 idD

□ (id,− id) □

□

(id,id)

α1⊕α2 □
β1⊕β2

(49)

By assumption the functor iX preserves limits and thus admits a left adjoint ladj(iX),
for X = B1,B2,B3,C1,C2. By passing to left adjoints, the counit cuX : iXjX → idC

induces the unit idC → iX ladj(iX) of the adjunction ladj(iX) ⊣ iX. Lemma 4.21
thus shows that the image under (-)! of the counit cuX is given, after composition
with an equivalence, by the unit id!

C → iX id!
X jX from Construction 4.18. Applying
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the exact contravariant functor (-)! to (49) thus yields the following diagram, up to
equivalence.

id!
D iB2 id!

B2 jB2 0

iC1 id!
C1 jC1 ⊕ iC2 id!

C2 jC2 iB2 id!
B2 jB2 ⊕ iB2 id!

B2 jB2 iB2 id!
B2 jB2

iB1 id!
B1 jB1 ⊕ iB3 id!

B3 jB3 U ! V !

□ (id,− id) □

□

(id,id)

□

The classes σ1, σ2 define an equivalence between the lower left squares and upper
right squares of the lower diagram and the (1− n)-th suspension of the upper dia-
gram. These equivalences extend to an equivalence of the entire diagrams by using
that the lower right and upper left squares are biCartesian. Restricting the equiva-
lence to the outer biCartesian squares provides us with a diagram in LinR(D,D)

id!
D (iB1jB1)! ⊕ (iB3jB3)! V !

V [n− 1] iB1jB1 [1− n]⊕ iB3jB3 [1− n] idD[1− n]

u

≃ ≃ ≃

cu

with horizontal fiber and cofiber sequences. Using Lemma 4.19, we find that this
diagram arises from the class σ, hence showing its non-degeneracy.

Remark 4.34. In the analogue of Theorem 4.33 in [BD19], it is not assumed that
the functors in (48) preserve limits. This restriction is needed in the argument
for showing that the image under (-)! of the counit iXjX → idC describes the unit
id!

C → iX id!
X jX, up to composition with an equivalence iX id!

X jX ≃ (iXjX)!. This
latter statement is likely true without this restriction.

We conclude this section with describing the gluing property of right Calabi–Yau
structures, dual to Theorem 4.35. Consider a limit diagram in LinCatR valued in
compact objects and limit preserving functors and proper R-linear ∞-categories of
the following form:

D C2 B3

C1 B2

B1

F1

F2

⌟ F2,2

F2,3

F1,1

F1,2 (50)

We form the following diagram in RModR:
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X HH(B2)∗ 0

⊕
i=1,2 HH∗(Bi ×Bi+1,Ci)[−1] (HH(B2)∗)⊕2 HH(B2)∗

HH(B1)∗ ⊕ HH(B3)∗ HH(C1)∗ ⊕ HH(C2)∗ HH(D)∗

□ (id,− id) □

□ HH∗(F2,1)⊕HH∗(F2,2)

(id,id)

HH∗(F1,1)⊕HH∗(F3,2)

(HH∗(F1),HH∗(F2))

Similar to the smooth case, a class in X consists of classes in HH∗(Bi×Bi+1,Ci), with
i = 1, 2, whose restrictions to HH(B2)∗[1] differ by sign, and we again call such classes
compatible. The above diagram induces a morphism ω : X → HH∗(B1 ×B3,D).

Theorem 4.35. Consider two classes σi : R[n]→ HH∗(Bi×Bi+1,Ci), with i = 1, 2,
whose restrictions to HH(B2)∗[1] are compatible and let σ : R[n]→ HH∗(B1×B3,D)
be the arising class. If σ1 and σ2 are non-degenerate, i.e. define weak right n-Calabi–
Yau structures on the functors

Ci −→ Bi ×Bi+1 ,

then σ is non-degenerate as well and thus defines a weak right n-Calabi–Yau struc-
ture on the functor

D −→ B1 ×B3 .

Proof. Analogous to the proof of Theorem 4.33.

4.2.5 Examples

We collect some examples of functors which admit a relative Calabi–Yau structure
which we will need later on.

Theorem 4.36 ([BD19]). Let M be a compact oriented manifold of dimension n
with boundary i : ∂M ⊂M and k a field. The left adjoint i! of the pullback functor

i∗ : Fun(M,D(k)) −→ Fun(∂M,D(k))

admits a left n-Calabi–Yau structure.

Given a commutative ring k and m ≥ 0, we denote by k[t±m] the algebra of graded
Laurent polynomials, with generator tm in degree m.

Lemma 4.37. Assume that char(k) ̸= 2 and let m ≥ 1 be odd. Then D(k[t±m]) is
smooth and proper as a k[t±2m]-linear ∞-category and further admits weak left and
right m-Calabi–Yau structures.
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Proof. The k[t±2m]-linear enveloping algebra Ae of A := k[t±m] is given by the graded
commutative dg-algebra k[t±, s±]/(s2 − t2), with generators t, s in degrees m sat-
isfying st = (−1)m2

ts = −ts (graded commutativity) and s2 = t2. As a right
Ae-module, A is equipped with the action 1.t = t and 1.s = −t. As a left (Ae)op-
module, A is equipped with the action t.1 = −t and s.1 = t. We denote by Â the
the right Ae-module A with the action 1.t = t and 1.s = t.

We consider Ae as a right module over itself. There is a retract of right Ae-
modules

A
1 7→1−s−1t−−−−−−→ Ae

17→1−−→ A

since the composite is given by multiplication by 1− 1.s−1t = 1 + t−1t = 2 ̸= 0 and
thus invertible. There is a similar retract

Â
17→1+s−1t−−−−−−→ Ae

17→1−−→ Â

and Ae ≃ A⊕ Â.
It follows that A is compact as a right Ae-module. The inverse dualizing bimodule

id!
D(A) is given by the tensor product with the left Ae-module A! = RHomAe(A,Ae) =

HomAe(A,Ae). One finds HomAe(A, Â) ≃ 0. We thus have RHomAe(A,Ae) ≃
HomAe(A,A) ≃ A on k-linear homology, with 1 ∈ A being the image of ϕ : A →
Ae, 1 7→ 1−s−1t. The element t ∈ A corresponds to ϕ′ : 1 7→ t−s. The left action of
Ae on HomAe(A,Ae) ≃ A is determined by t.ϕ = ϕ′ and s.ϕ = −ϕ′. It follows that
A! = RHomAe(A,Ae) ≃ A[−m] as left Re-modules, since the shift by −m preserves
the homology of A over k but flips the signs of the actions of t and s (since −m is
odd). This shows that id!

D(A) ≃ idD(A)[−m], as desired. Composing with id∗
D(A) also

yields idD(A) ≃ id∗
D(A)[−m].

4.3 Calabi–Yau structures for perverse schobers
In Section 4.3.1, we describe how relative Calabi–Yau structures arise from perverse
schobers on discs. We then discuss relative Calabi–Yau structures on global sections
of perverse schobers in Section 4.3.2. One of the main results is that the global
sections of locally constant perverse schober with trivial monodromy, whose generic
stalk is Calabi–Yau, is relative Calabi–Yau.

4.3.1 Calabi–Yau structures locally

The goal of this section is to prove the following Proposition.

Proposition 4.38. Let F : C ↔ D :G be a spherical adjunction of R-linear ∞-
categories. Consider the adjoint functors, see Lemma 3.24,

Rm
F := (ϱ1[−1], ϱ2[−2], . . . , ϱm[−m]) : VmF ←→ D×m :SmF := (ς1[1], ς2[2], . . . , ςm[m]) .

(51)
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(1) Suppose that C,D are smooth and that the class σG : R[n] → HH(C,D) defines
a weak left n-Calabi–Yau structure on G, which restricts to a weak left (n− 1)–
Calabi–Yau structure σD : R[n−1]→ HH(D) on D. Then the functor SmF admits
a canonical weak left n-Calabi–Yau structure, which restricts on D×m to

σ×m
D : R[n− 1] −→ HH(D×n) ≃ HH(D)⊕n .

(2) Suppose that C,D are proper and that the class σF : R[n]→ HH∗(D,C) defines a
weak right n-Calabi–Yau structure on F , which restricts to a weak right (n−1)–
Calabi–Yau structure σD : R[n − 1] → HH(D)∗ on D. Then the functor Rm

F

admits a canonical weak right n-Calabi–Yau structure, which restricts on D×m

to
σ×m
D : R[n− 1] −→ HH(D×n)∗ ≃ (HH(D)∗)⊕n .

Using the gluing properties of Calabi–Yau structures, we will reduce the proof
of Proposition 4.38 to the case m = 3 and F = 0. This case is then first solved for
D = RModR, and then for arbitrary D by tensoring, see Proposition 4.28.

Construction 4.39. Let D = RModR, considered as an R-linear smooth and
proper ∞-category. We construct two inverse equivalences U, T : Fun(∆1,D) →
Fun(∆1,D) via Kan extension.

Consider the ∞-category X of diagrams in D of the follow form.

a′ b′ 0

0 a b 0

0 a′′ b′′

□ □

□ □

Formally, the ∞-category X can be characterized as consisting of diagrams which
are repeated Kan extensions of their restriction to a → b. The restriction functor
to a→ b thus defines by [Lur09, 4.3.2.15] a trivial fibration ϕ : X→ Fun(∆1,D). It
hence admits an inverse, unique up to contractible space of choices. We denote by
ψ′ : X→ Fun(∆1,D) the restriction functor to a′ → b′ and by ψ′′ : X→ Fun(∆1,D)
the restriction functor to a′′ → b′′.

The functor U is defined as the suspension of the composite functor

Fun(∆1,D) ϕ−1
−−→ X

ψ′
−→ Fun(∆1,D) ,

and the functor T is defined as the delooping of the composite functor

Fun(∆1,D) ϕ−1
−−→ X

ψ′′
−→ Fun(∆1,D) .

The functor U from Construction 4.39 is informally given by the assignment

U :
(
a −→ b

)
7→

(
b −→ cof(a→ b)

)
.
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Lemma 4.40. Let D = RModR. The R-linear ∞-category Fun(∆1,D) is smooth
and proper and the functor U from Construction 4.39 is a Serre functor of Fun(∆1,D).
Proof. Consider the fully faithful, R-linear functors

ι0 : D→ Fun(∆1,D), d 7→ (d→ 0) ,

ι1 : D→ Fun(∆1,D), d 7→ (0→ d) .
The functors ι0, ι1 admit repeated left and right adjoints, and in particular pre-
serve compact objects. Observing that the evaluation functors ev0 = ladj(ι0), ev1 =
radj(ι1) : Fun(∆1,D) → D arise as adjoints of ι0, ι1, we find that if an object
a→ b ∈ Fun(∆1,D) is compact, then a, b ∈ D = RModR are compact too.

It follows from Lemma 4.8, that ladj(ι0)∗(idD) ≃ ι0 ◦ ladj(ι0) and (ι1)!(idD) ≃
ι1 ◦ radj(ι1) are compact in LinR(Fun(∆1,D),Fun(∆1,D)). We observe that idD is
given by the cofiber of a natural transformation ι0 ◦ ladj(ι0)[−1] → ι1 ◦ radj(ι1).
In particular, we find that idFun(∆1,D) is also compact, showing that Fun(∆1,D) is
smooth.

Any object a � b in Fun(∆1,D) is given as the cofiber of a map (a[−1] � 0)→
(0 � b). We thus find for any a, a′, b, b′ ∈ RModR an equivalence

MorFun(∆1,D)(a � b, a′ � b′) ≃ fib
(

MorD(b, b′)→ MorD(a, cof(a′ � b′))
)
, (52)

implying that Fun(∆1,D) is proper.
Let a → b, a′ → b′ ∈ Fun(∆1,D) be compact objects. Using that idD is an

R-linear Serre functor, we find equivalences in RModR
MorFun(∆1,D)(a � b, a′ � b′) ≃ fib

(
MorD(b, b′)→ MorD(a, cof(a′ � b′))

)
≃ cof

(
MorD(a, cof(a′ � b′))∗ → MorD(b, b′)∗

)∗

≃ cof
(
MorD(cof(a′ � b′), a)→ MorD(b′, b)

)∗

≃ MorFun(∆1,D)(b′ � cof(a′ � b′), cof(a→ b) � a[1])∗

≃ MorFun(∆1,D)(a′ → b′, U(a→ b))∗ ,

functorial in a � b ∈ Fun(∆1,D)c,op, a′ � b′ ∈ Fun(∆1,D)c. The second to last
equivalence arises in the same way as the equivalence (52). The last equivalence
uses that the sequences a′ → b′ → cof(a′ → b′) and b → cof(a → b) → a[1] are
fiber and cofiber sequences. This shows that U is a Serre functor and concluding
the proof.

Lemma 4.41. Let D = RModR. We let σD : R id−→ HH(D) ≃ R denote the apparent
weak left 0-Calabi–Yau structure on D and σ∗

D : R id−→ HH(D)∗ ≃ R denote the
apparent weak right 0-Calabi–Yau structure on D.
(1) The R-linear functor

S := (ς1[1], ς2[2], ς3[3]) : D×3 −→ Fun(∆1,D)

admits a unique weak left 1-Calabi–Yau structure which restricts to the weak left
0-Calabi–Yau structure σ×3

D on D×3.
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(2) The R-linear functor

(ϱ1[−1], ϱ2[−2], ϱ3[−3]) : Fun(∆1,D) −→ D×3

admits a unique weak right 1-Calabi–Yau structure which restricts to the weak
right 0-Calabi–Yau structure (σ∗

D)×3 on D×3.

Proof. We only prove part (1), part (2) is similar. The split localization sequence

D
ς2[2]−−→ Fun(∆1,D) ϱ3[−3]−−−→ D

provides us with a splitting HH(Fun(∆1,D)) ≃ HH(D) ⊕ HH(D) ≃ R⊕2. Using
the adjunctions ϱ3[−3] ⊣ ς3[3] and ς2[2] ⊣ ϱ1[−2], we find that HH(ϱ3[−3]) and
HH(ϱ1[−2]) are the two projection maps R⊕2 → R and HH(ς3[3]),HH(ς2[2]) are the
two inclusion maps R→ R⊕2 of the direct summands.

With the above, we have

HH
(
Fun(∆1,D),D⊕3

)
≃ cof(R⊕3 M−→ R⊕2) ≃ R[1] ,

where M =
(

1 0 −1
0 1 −1

)
. The formula for M follows from

ϱ1[−2] ◦ ς1[1] ≃ [−1]

and
ϱ3[−3] ◦ ς1[1] ≃ [−1] ,

see also Remark 4.42.
We let σ be the the class R[1] id−→ R[1] ≃ HH (Fun(∆1,D),D⊕3). The observation

that M (1, 1, 1) = 0 implies that σ indeed restricts to σ×3
D on D×3. Furthermore, σ

is clearly unique with this property. To complete the proof, it remains to show that
σ is non-degenerate.

The class σ determines a diagram

id!
Fun(∆1,D) S!(id!

D×3)

S!(idD×3) idFun(∆1,D)

u

S!(σ×3
D

)

cu

together with a null-homotopy of the composite functor id!
Fun(∆1,D) → idFun(∆1,D).

Composing the first two morphisms in the above diagram, we obtain the sequence

id!
Fun(∆1,D) −→ S!(idD×3) cu−−→ idFun(∆1,D) . (53)

The morphism u is by Lemma 4.21 equivalent to the composite of the unit of the
adjunction SL ⊣ S with id!

Fun(∆1,D). By Lemmas 4.11, 4.12 and 4.40, there exists
an equivalence between id!

Fun(∆1,D) and the functor T from Construction 4.39. It is
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straightforward to see, that the functor T is furthermore equivalent to the cotwist
functor of the adjunction S ⊣ SR. There thus exists a fiber and cofiber sequence

T
u′
−−→ SSR

cu−−→ idFun(∆1,D) , (54)

where u′ is up to equivalence a unit of the adjunction SL ⊣ S composed with T ,
see [DKSS21] or [Chr22d, Remark 2.10]. The respective counit maps in (53) and
(54) describe the same counit map. The respective unit maps are also equivalent, up
to composition with an autoequivalence of SSR. To show that this autoequivalence
may be chosen trivially, we inspect the R-module of all possible autoequivalences of
SSR = S!(idD×3). We have

Map(S!(idD×3), S!(idD×3)) ≃ Map(ladj(S!)S!(idD×3), idD×3) ,

where ladj(S!) = SL(-)SRR is the left adjoint of S!, with SRR the right adjoint of
SR. Since SR ≃ SL ◦ T , we have SRR ≃ T−1 ◦ S and thus

ladj(S!)S!(idD×3) ≃ SLSSRSRR ≃ SLSSLS .

The functor SLS splits as

SLS ≃ idD×3 ⊕P ,

where P is the twist functor of the adjunction SL ⊣ S. It acts via ’rotation’, meaning
that P sends the i-th component of the direct sum to the (i − 1)-th component
of the direct sum for all i ∈ Z/3Z and then acts with some suspensions on the
three components. It is straightforward to see, that there are no non-zero natural
transformations between idD×3 and P or P 2. It follows that the morphism

RMod⊕3
R ≃ MapLinR(D×3,D×3)(idD×3 , idD×3) S!−→ MapLinR(Fun(∆1,D),Fun(∆1,D))(SSR, SSR)

is an equivalence. This shows that every possible autoequivalence SSR can be
accommodated by choosing a different Hochschild-class in D×3. We may thus con-
clude from the existence of the cofiber sequence (54) that there exists some choice
of Hochschild class (σ′)×3 ∈ R⊕3, which turns (53) into a cofiber sequence. Since
ladj(S!)S! contains the identity as a direct summand, we find that S! is a conserva-
tive functor. The fact that σ′

D×3 induces an equivalence S!(id!
D×3) ≃ S!(idD×3) thus

implies that σ′ : id!
D×3 → idD×3 is already an equivalence. It follows that σ′ ∈ π0(R)

must be an invertible element. Upon composing σ′ with its inverse in the ring π0(R)
the cofiber sequence (53) clearly remains a cofiber sequence. We may thus choose
σ′ = σD as desired, concluding the proof.

Remark 4.42. Let again D = RModR. We show below that a variation of the first
part of the proof of Lemma 4.41 can be used to prove the equivalence

HH([1]) ≃ −HH(idD) ≃ − idR .
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We can further relax the assumptions of this argument as follows: let E : LinCatcpt
R →

RModR be an additive invariant, on the ∞-category of compactly generated R-
linear∞-categories and compact objects preserving R-linear functors, meaning that
E sends split-exact sequences in LinCatcpt

R to split cofiber sequences. Then E sat-
isfies E([1]) ≃ − idE(C), for any C ∈ LinCatcpt

R and [1] : C→ C the suspension functor.

Applying HH(-) to the split-exact sequence

D
ς1−−→ Fun(∆1,D) ϱ2−−→ D

yields the split cofiber sequence

R
(HH([−1]),HH([−1]))−−−−−−−−−−−−→ R⊕2 HH(ϱ2)−−−−→ R ,

showing that HH(ϱ2) ≃ (−α, α) for some autoequivalence α : R→ R.
We have ϱ2 ◦ ς2[2] ≃ [2] and ϱ2 ◦ ς3[3] ≃ [3]. Applying HH(-) to the functors

([2], [3]) : D⊕2 (ς2[2],ς3[3])−−−−−−→ Fun(∆1,D) ϱ2−−→ D

yields
R⊕2 (idR,idR)−−−−−→ R⊕2 (−α,α)−−−−→ R .

We obtain that HH([2]) ≃ −α ≃ −HH([3]), as desired.
Proof of Proposition 4.38. We only prove part (2), the proof of part (1) is analogous.

We first prove the proposition in the case that F = 0D : 0→ D. By Lemma 3.45,
there is a pullback diagram in LinCatR

Vm0D Vm−1
0D

V3
0D D

⌟ ϱ1[−1]

ϱ3[−3]

such that the functor ϱi[−i] : Vm0D → D factors for i = 1, 2 as

Vm0D → V3
0D

ϱi[−i]−−−→ D

and for i = 3, . . . ,m as
Vm0D → Vm−1

0D
ϱi−2[2−i]−−−−−→ D .

To show that Rm
D admits the desired weak right Calabi–Yau structure, it thus suffices

by Theorem 4.35 to show this in the case m = 3. This case follows from combining
Lemma 4.41 and Proposition 4.28.

Suppose now that F : C→ D is any spherical functor with a weak right Calabi–
Yau structure. Again, by Lemma 3.45, there exists a pullback diagram in LinCatR.

VmF C

Vm+1
0D D

⌟ F

ϱm+1[−m−1]
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By Theorem 4.35, the above constructed weak right Calabi–Yau structure on Rm+1
0D

glues with the Calabi–Yau structure of F to the desired weak right Calabi–Yau
structure on Rm

F .

4.3.2 Calabi–Yau structures globally

We begin by recording a direct consequence of the gluing property of Calabi–Yau
structures.

Theorem 4.43. Let F : Exit(Γ)→ LinCatR be a Γ-parametrized perverse schober.

(i) Suppose that F takes values in smooth R-linear ∞-categories. Suppose further
that

• for each vertex v of Γ with incident halfedges a1, . . . , am and corresponding
edges e1, . . . , em, the functor

m∏
i=1

ladj(F(v ai−→ ei)) :
m∏
i=1

F(ei) −→ F(v)

carries a weak left n-Calabi–Yau structure

σv : R[n]→ HH(F(v),
m∏
i=1

F(ei)) .

• for each vertex v and 1 ≤ i ≤ m, the restriction of σv along the functor
ladj(F(v ai−→ ei)) defines a weak left (n−1)-Calabi–Yau structure on F(ei),
denoted

σe,ai : R[n− 1]→ HH(F(ei)) .

• for each internal edge e ∈ Γ◦
1 with incident halfedges a ̸= b, we have

σe,a ≃ −σe,b.

Then the R-linear ∞-category of global sections H(Γ,F) is smooth and the
functor from Definition 3.37

∂F :
∏
e∈Γ∂1

F(e) −→ H(Γ,F)

admits a weak left n-Calabi–Yau structure.

(ii) Suppose that F takes values in proper R-linear ∞-categories and limit preserv-
ing functors. Suppose further that

• for each vertex v of Γ with incident halfedges a1, . . . , am and corresponding
edges e1, . . . , em, the functor

m∏
i=1

F(v ai−→ ei) : F(v) −→
m∏
i=1

F(ei)
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carries a weak right n-Calabi–Yau structure

σv : R[n]→ HH∗(
m∏
i=1

F(ei),F(v)) .

• for each vertex v and 1 ≤ i ≤ m, the restriction of σv along the functor
F(v ai−→ ei) defines a weak right (n − 1)-Calabi–Yau structure on F(ei),
denoted

σe,ai : R[n− 1]→ HH∗(F(ei)) .
• for each internal edge e ∈ Γ◦

1 with incident halfedges a ̸= b, we have
σe,a ≃ −σe,b.

• the R-linear ∞-category of global sections H(Γ,F) is proper1.

Then the evaluation functor at the external edges∏
e∈Γ∂1

eve : H(Γ,F) −→
∏
e∈Γ∂1

F(e)

admits a weak right n-Calabi–Yau structure.
Proof. Part ii) follows from repeated application of Theorem 4.35, by using that
we can compute the limit over Exit(Γ) via repeated pullbacks. Part i) follows by a
similar argument from Theorem 4.33, when using that H(Γ,F) is equivalent to the
colimit in LinCatR of the left adjoint diagram of F.

Given a parametrized perverse schober without singularities, also called a locally
constant perverse schober, whose generic stalk admits a Calabi–Yau structure, we
show in Theorem 4.44 that its global sections admit a Calabi–Yau structure if its
monodromy, see Section 3.3.4, acts trivially on the corresponding (dual) Hochschild
class. Note that a direct variation on this result for arbitrary perverse schobers does
not hold, as follows from a variant of Example 3.64.
Theorem 4.44. Let F : Exit(Γ) → LinCatR be a Γ-parametrized perverse schober
without singularities. Fix an edge e of Γ and let N = F(e) be the generic stalk of F.

(i) Suppose that N is smooth and admits a weak left (n− 1)-Calabi–Yau structure

σ : R[n− 1]→ HH(N) .

Suppose further that for each loop γ : S1 → S\Γ0, mapping the chosen basepoint
to e, composition with the monodromy equivalence in RModR

HH(F→(γ, e)) : HH(N) −→ HH(N)

preserves σ. Then the functor

∂F :
∏
e∈Γ∂1

F(e) −→ H(Γ,F) (55)

admits a weak left n-Calabi–Yau structure.
1If Γ is a spanning graph of a marked surface, one can show that this is the case if and only if

each boundary component of the marked surface has at least one marked point.

106



(ii) Suppose that N and H(Γ,F) are proper and that N admits a weak right (n−1)-
Calabi–Yau structure

σ : R[n− 1]→ HH(N)∗ .

Suppose further that for each loop γ : S1 → S\Γ0, mapping the chosen basepoint
to e, composition with the dual of the monodromy equivalence in RModR

HH(F→(γ, e))∗ : HH(N)∗ −→ HH(N)∗

preserves σ. Then the functor∏
e∈Γ∂1

eve : H(Γ,F) −→
∏
e∈Γ∂1

F(e)

admits a weak right n-Calabi–Yau structure.

Proof. We only prove part (1), part (2) is analogous. Using Proposition 3.47 and
Lemma 3.62, we may assume that Γ has a single vertex v. Let m be the valency of
v. We choose a total order of the halfedges incident to v. Applying Proposition 4.38
to the spherical adjunction F = 0N : 0↔ N :G, with weak left n-Calabi–Yau struc-
ture on G arising from σ, yields a weak left n-Calabi–Yau structure on Rm

0N , which
restricts on N×m to σ×m. The diagram Rm

0N gives rise to a perverse schober G′
v on

the m-spider Γm, assigning to the incidence of the i-th halfedge with v the functor
ϱi[−i].

Consider an internal edge h of Γ, which is by assumption a loop. The loop
consists of two halfedges which lie in positions 1 ≤ i < j ≤ m. We modify G′

v by
composing the functor G′

v(v
j−→ h) with the suspension [1] : N → N. We do this for

each such internal edge h and denote the arising perverse schober on the m-spider
by Gv. We let G be the Γ-parametrized perverse schober, which restricts along
Exit(Γm)→ Exit(Γ) to Gv. Since HH([1]) = −HH(idN), we find that G satisfies the
assumptions of Theorem 4.43.

The monodromy of G is fully determined by the monodromy along a generating
set of π1(ΣΓ). As the generating set, we choose the loops homotopic to the loops
of Γ. Using Lemma 3.59, one can show that the monodromy is independent of the
chosen basepoint of these loops. We may thus let h be such a loop, with halfedge
i < j, and δ : [0, 1]→ Σv a curve satisfying δ(0), δ(1) ∈ ∂Σv ∩ h, wrapping from i to
j in the counterclockwise direction. Using that ϱl[−l] ◦ ςl−1[l − 1] ≃ [−1] for l ≥ 2,
we find that the monodromy G→(δ) : N→ N is equivalent to the identity.

By Proposition 3.63, the perverse schober F differs from G, up to equivalence
of perverse schobers, by changing the monodromy along each loop of Γ by the
monodromy of G along that loop. Explicitly, this change of monodromy can be
achieved by composing G(v j−→ e) with the monodromy equivalence F→(δ), with e
a loop with halfedges i < j and δ the loop going from i to j. Since by assumption
HH(F→(δ))◦ (-) acts trivially on σ and G satisfies the assumptions of Theorem 4.43,
we find that F does so as well. Theorem 4.43 thus shows that the functor (55)
admits the desired weak left n-Calabi–Yau structure.
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4.4 Exact structures from relative Calabi–Yau structures
Consider an exact functor G : C→ D between stable∞-categories, meaning a func-
tor which preserves finite limits and finite colimits. We can pull back the split-exact
structure on D to an exact structure on the∞-category C, meaning that a sequence
in C is exact if and only if its image under G is a split-exact sequence in D, see
Example 4.53. The goal of this section is to show that if G carries a right 2-Calabi–
Yau structure and is spherical, then the exact structure on C is Frobenius and its
extriangulated homotopy category is 2-Calabi–Yau.

In Section 4.4.1, we recall the notion of an exact ∞-category and describe pull-
backs of exact structures. In Section 4.4.2, we recall what is an extriangulated
category and why it is natural to consider the extriangulated homotopy categories
of exact ∞-categories. In Section 4.4.3, we describe the Frobenius exact structure
arising from a spherical functor carrying a 2-Calabi–Yau structure.

4.4.1 Exact ∞-categories

Definition 4.45 ([Bar15]). An exact ∞-category is a triple (C,C†,C
†), where C is

an additive ∞-category and C†,C
† ⊂ C are subcategories (called subcategories of

inflations and deflations), satisfying that

(1) every morphism 0 → X in C lies in C† and every morphism X → 0 in C lies in
C†.

(2) pushouts in C along morphisms in C† exist and lie in C†. Dually, pullbacks in C

along morphisms in C† exist and lie in C†.

(3) Given a commutative square in C of the form

X Y

X ′ Y ′

a

b c

d

the following are equivalent.

• The square is pullback, c ∈ C† and d ∈ C†.
• The square is pushout, b ∈ C† and a ∈ C†.

When the exact structure is clear from the context, we also simply refer to C as an
exact ∞-category.

Definition 4.46. An exact sequenceX → Y → Z in an exact∞-category (C,C†,C
†)

consists of a fiber and cofiber sequence in C as follows, with a ∈ C† and b ∈ C†.

X Y

0 Z

a

□ b
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Example 4.47.

• Let C be an additive∞-category. Then there is an exact∞-category (C,C†,C
†)

with inflations consisting of inclusions of direct summands and deflations con-
sisting of projections onto direct summands, called the split-exact structure.
The exact sequences are the split-exact sequences X ↪→ X ⊕ Y ↠ Y .

• Let C be a stable ∞-category. Then (C,C,C) is an exact ∞-category.

Definition 4.48. Let (C,C†,C
†) be an exact ∞-category.

1) An object P ∈ C is called projective if every exact sequence X → Y → P is split-
exact. An object I ∈ C is called injective if every exact sequence I → Y → Z is
split-exact.

2) We say that C has enough projectives if for each object X ∈ C there exists
an exact sequence X → P → Y with P projective. Similarly, we say that C

has enough injectives if for each object Y ∈ C there exists an exact sequence
Y → I → X with I injective.

3) We say that C is Frobenius if C has enough projectives and injectives and the
classes of projective and injective objects coincide.

The∞-categorical version of the stable 1-category of a Frobenius exact 1-category
is the following.

Proposition 4.49 ([JKPW22]). Let (C,C†,C
†) be a Frobenius exact∞-category and

W the class of morphisms f : X → Y which fit into an exact sequence

X
(f,g)−−−→ Y ⊕ I −→ J

with I and J injective and g arbitrary. Then, the ∞-categorical localisation C̄ :=
C[W−1] of C at W is a stable ∞-category.

Proof idea. Applying [Cis19, Prop. 7.5.6] and its dual version, one finds that C̄

admits finite limits and colimits and pushouts and pullbacks coincide.

Lemma 4.50. Suppose that C is a k-linear ∞-category and (C,C†,C
†) a Frobenius

exact ∞-category. Then the stable ∞-category C̄ from Proposition 4.49 inherits the
structure of a k-linear ∞-category in the sense of [Lur18, D.1.1.1].

Proof. As argued in [Lur18, Section D.1.2], the datum of a k-linear structure on
a presentable ∞-category D is equivalent to the datum of a monoidal functor
LModff

k → Fun(D,D) with domain the symmetric monoidal ∞-category of (au-
tomatically free) k-modules of finite rank. In turn, we can identify this datum with
the datum of an object of LModff

k ×Alg(Cat∞) LMod(Cat∞)×Cat∞ D, see [Lur17, Sec-
tion 4.7.1], where Cat∞ is considered as a monoidal ∞-category with the Cartesian
monoidal structure.
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Let Z = ∐
W ∆1 and Z̄ = ∐

W ∆0. We have apparent functors π : Z → Z̄ and
Z → C. Using the module structure of C, the latter functor gives rise to a functor
f : Z × LModff

k → C × LModff
k → C. We define the k-linear ∞-category C′ as the

pushout
Z × LModff

k C

Z̄ × LModff
k C′

⌜

in LModff
k ×Alg(Cat∞) LMod(Cat×

∞). By [Lur17, 4.2.3.5], the underlying diagram in
Cat∞ is also pushout. For any ∞-category A, we obtain a pullback square in Cat∞
as follows.

Fun(C′,A) Fun(C,A)

Fun(Z̄ × LModff
k ,A) Fun(Z × LModff

k ,A)

⌟

Since W is closed under the action by LModff
k , we find that C′ is the ∞-categorical

localization of C at W , see [Cis19, Def. 7.1.2]. This concludes the argument, showing
that C̄ inherits a k-linear structure.

Definition 4.51. 1. An exact functor G : (C,C†,C
†) → (D,D†,D

†) between ex-
act∞-categories consists of a functor G : C→ D which preserves zero objects,
inflations, deflations, pushouts along inflations and pullbacks along deflations.

2. A sub-exact structure of an exact ∞-category (C,C†,C
†) consists of an exact

∞-category (C,C‡,C
‡), satisfying that C‡ ⊂ C† and C‡ ⊂ C†.

Sub-exact structures can be pulled back along exact functors as follows.

Lemma 4.52. Let G : (C,C†,C
†) → (D,D†,D

†) be an exact functor between exact
∞-categories and (D,D‡,D

‡) a sub-exact structure of (D,D†,D
†). Then there exists

a sub-exact structure (C,C‡,C
‡) of (C,C†,C

†), such that G defines an exact functor
G : (C,C‡,C

‡)→ (D,D‡,D
‡).

Proof. We set C‡ ⊂ C† to be the subcategory of morphisms whose image under G
lies in D‡. We define C‡ similarly. It is straightforward to verify that (C,C‡,C

‡) is
an exact ∞-category and that G : (C,C‡,C

‡)→ (D,D‡,D
‡) is an exact functor.

Example 4.53. Suppose that C and D are stable ∞-categories and G : C → D

is an exact functor in the usual sense, i.e. a functor that preserves finite limits
and colimits. Then G defines an exact functor G : (C,C,C) → (D,D,D) between
exact∞-categories. Applying Lemma 4.52, we obtain a non-trivial additional exact
structure (C,C†,C

†) on C by pulling back the split-exact structure (D,D†,D
†) on

D. A fiber and cofiber sequence in C is exact in (C,C†,C
†) if and only if its image

under G is split-exact.
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Proposition 4.54. Let G : C→ D be an exact functor between stable ∞-categories.
If G is a spherical functor, then the exact ∞-category (C,C†,C

†) from Example 4.53
is Frobenius. The subcategory of injective and projective objects of C consists of the
additive closure of the essential image of the right adjoint H of G.

Remark 4.55. A result similar to Proposition 4.54 appears for triangulated cate-
gories in [BS21], see Theorem 4.23 and Remark 4.24 in loc. cit.

Proof of Proposition 4.54. Let F be the left adjoint of G and H the right adjoint of
G. By the sphericalness of G, we have that H ≃ F ◦TD, with TD the cotwist functor
of the adjunction G ⊣ H, see [DKSS21, Cor. 2.5.16]. In particular, it follows that
the essential images of F and H, and hence also their additive closures in C, agree.

We begin by showing that every object of the form F (d) ∈ C with d ∈ D

is injective. A dual argument shows that every object of the form H(d) ∈ C is
projective. Let c ∈ C and consider an extension α ∈ Ext1

C(F (d), c). The extension α
corresponds to a fiber and cofiber sequence c → z → F (d) in C. The image of this
fiber and cofiber sequence under G splits (i.e. defines an exact sequence) if and only
if G(α) ≃ 0. The commutative diagram,

Ext1
D(GF (d), G(c))

Ext1
C(F (d), c) Ext1

D(d,G(c))

u

≃

G

with u the unit of F ⊣ G, shows that G(α) ≃ 0 if and only if α ≃ 0. This is the case,
if and only if the fiber and cofiber sequence c→ z → F (d) already splits. Since c is
chosen arbitrarily, it follows that F (d) is injective.

Next, we show that C has enough projective objects, a similar argument shows
that C has enough injective objects. Let c ∈ C. We have a fiber and cofiber sequence
c

uc−→ HG(x) → TC(c), where uc is a unit map and TC the twist functor of G ⊣ H.
We apply G and extend to the diagram

TDG(c) 0

G(c) GHG(c) G(c)

0 GTC(c) 0

□

G uc

□

cuG(c)

□

with cuG(c) a counit map and all squares biCartesian. This shows that the sequence
G(c) G uc−−→ GHG(x)→ GTC(c) in D splits and hence that that c uc−→ HG(x)→ TC(c)
is exact, as desired

Finally, we show that any injective or projective object lies in the additive closure
(closure under direct summands) of the essential image of H. Let I be injective.
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Then we have an exact sequence I → HG(I)→ TC(I) in C. Since I is injective, this
sequence splits, showing that I is a direct summand of HG(I), as desired. If P is
projective, we similarly find an exact sequence T−1

C → FG(P )→ P , showing that P
is a direct summand of FG(P ) ≃ HT−1

D G(P ), as desired, concluding the proof.

4.4.2 Extriangulated categories

Extriangulated categories were introduced by Nakaoka-Palu in [NP19] as a simul-
tanious generalization of triangulated and exact 1-categories. An extriangulated
category (C,E, s) consists of

• an additive 1-category C,

• an additive bifunctor E : Cop × C → Ab to the additive 1-category of abelian
groups, of which we think as describing an interesting class of extensions in C
and

• a sequence (Y → Z → X) = s(α), called realization, associated to each α ∈
E(X, Y ),

subject to number of conditions, see [NP19]. We will usually assume that our extri-
angulated categories are linear over a field k and that E takes values in Vectk.

Examples of extriangulated categories are, besides triangulated and exact cat-
egories, extension closed subcategories of triangulated categories. A further natu-
ral source of extriangulated categories are the homotopy 1-categories of exact ∞-
categories. To see this, note that by [Kle20] any exact ∞-category admits a stable
hull, meaning that it can be embedded as an extension closed subcategory in a
stable ∞-category. Passing to homotopy categories, one obtains an extriangulated
structure on the homotopy category, as it is an extension closed subcategory of the
triangulated homotopy category of the stable hull. An independent and more direct
proof that the homotopy category is extriangulated also appears in [NP20].

Given an exact ∞-category C, the additive functor of extensions E : hoCop ×
hoC → Ab in the extriangulated structure of hoC describes isomorphism classes
of exact sequences in C. The extriangulated structure on hoC can be useful when
studying the exact∞-category C. For instance, one can use it to formulate a notion
of cluster-tilting object in the exact∞-category C, which is simply an object which is
cluster-tilting when considered as an object in the extriangulated homotopy category
hoC in the sense of Definition 4.61 below.

The definition of a Frobenius extriangulated category is analogous to the defini-
tion of a Frobenius exact ∞-category, see Definition 4.48.

Definition 4.56. Let (C,E, s) be an extriangualated category.

1) An object P ∈ C is called projective if E(P,X) ≃ 0 for all X ∈ C and injective
if E(X,P ) ≃ 0 for all X ∈ C.
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2) We say that C has enough projectives if for each object X ∈ C there exists
an exact sequence X → P → Y with P projective. Similarly, we say that C
has enough injectives if for each object Y ∈ C there exists an exact sequence
Y → I → X with I injective.

3) We say that C is Frobenius if C has enough projectives and injectives and the
classes of projective and injective objects coincide.

The condition of being a projective or injective object in an exact∞-category can
be tested in the extriangulated homotopy category. We further have the following.

Lemma 4.57. An exact ∞-category is Frobenius if and only if its extriangulated
homotopy category is Frobenius.

Remark 4.58. Given a Frobenius extriangulated category C, its stable category C̄
is defined as the quotient category by the ideal of morphisms which factor through
an injective object. The stable category C̄ inherits the structure of a triangulated
category, see Corollary 7.4 and Remark 7.5 in [NP19].

If (C,C†,C
†) is a Frobenius exact ∞-category, the triangulated homotopy cate-

gory of its associated stable ∞-category C̄ can be identified with the triangulated
stable category ¯hoC of the Frobenius extriangulated homotopy category hoC.

Definition 4.59. A k-linear extriangulated category (C,E, s) is called extrianguled
2-Calabi–Yau if there exists an isomorphism of vector spaces E(X, Y ) ≃ E(Y,X)∗,
bifunctorial in X and Y .

Lemma 4.60. Let (C,C†,C†) be a k-linear exact ∞-category, whose extriangulated
homotopy category is extriangulated 2-Calabi–Yau. Then the homotopy category
ho C̄ of its stable category C̄ is triangulated 2-Calabi–Yau.

Proof. We denote by E : hoCop×hoC→ Vectk the additive bifunctor parametrizing
extensions in the extriangulated homotopy category of C. For any X, Y ∈ C̄ arising
from X ′, Y ′ ∈ C, the vector space Ext1

C̄(X, Y ) can be seen as describing equivalence
classes of fiber and cofiber sequences Y → Z → X, which arise from an exact
sequence Y ′ → Z ′ → X ′ in C. We thus find that Ext1

C̄(X, Y ) ≃ E(X ′, Y ′), and this
description is bifunctorial in X and Y on the level of the homotopy category of C̄.

Fix X, Y ∈ C̄. We denote by Y [−1] and Y [2] the shifts of Y with respect to the
triangulated structure of C̄. We have

HomC̄(X, Y ) ≃ E(X ′, Y [−1]′) ≃ E(Y [−1]′, X ′)∗ ≃ HomC̄(Y,X[2])∗ .

These equivalences are bifunctorial in X and Y , showing the claim.

We conclude this section with stating the definition of a cluster-tilting object in
an extriangulated category.

Definition 4.61. Let X be an object in an extriangulated category (C,E, s).
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• X is called basic if it can be decomposed into finitely many indecomposable
direct summands which are pairwise non-isomorphic.

• X is called rigid if
E(X,X) ≃ 0 .

Further, a rigid object X is called maximal rigid, if there exist no objects
Y ∈ C, satisfying that X ⊕ Y is rigid and Y is not a direct sum of summands
of C.

• X is called cluster-tilting if it is basic, rigid and if for Y ∈ C the conditions
E(X, Y ) ≃ 0 and E(Y,X) ≃ 0 each imply that Y is a finite direct sum of direct
summands of X.

4.4.3 Exact structures via relative Calabi–Yau structures

Let κ = k be a field or κ = k[t±2n], for n ≥ 1, the commutative dg-algebra of
graded Laurent polynomials over a field with generator in degree |t2n| = 2n. We fix
a functor G : B → A between κ-linear smooth and proper ∞-categories, which is
spherical and carries a weak right n-Calabi–Yau structure.

We begin this section by exhibiting a relative version of the triangulated n-
Calabi–Yau condition Exti(X, Y ) ≃ Extn−i(Y,X)∗ for B, using the relative Calabi–
Yau structure of B. We then describe a Frobenius exact ∞-structure on B arising
from G.

Definition 4.62. Let X, Y ∈ Bc be compact objects.

1. We denote by MorCY
B (X, Y ) ⊂ MorB(X, Y ) ∈ D(κ) the maximal direct sum-

mand satisfying that the composite with

G : MorB(X, Y ) −→ MorA(G(X), G(Y ))

yields the zero morphism in D(κ). We call MorCY
B (X, Y ) the Calabi–Yau mor-

phism object.

2. We denote by Exti,CY
B (X, Y ) := H0 MorCY

B (X, Y [i]) ∈ N(Vectk) the k-vector
space of Calabi–Yau extensions.

Lemma 4.63. (1) The Calabi–Yau morphism objects assemble into a functor

MorCY
B (-, -) : Bc,op ×Bc → D(κ) .

There further exists a natural transformation MorCY
B (-, -) → MorB(-, -) which

at a point (X, Y ) ∈ Bc,op × Bc is given by the inclusion of the direct summand
MorCY

B (X, Y ) ⊂ MorB(X, Y ).

(2) The Calabi–Yau extensions form the maximal subfunctor

Exti,CY
B (-, -) ⊂ ExtiB(-, -) : Bc,op ×Bc → N(Vectk)

satisfying that Exti,CY
B (G(-), G(-)) ≃ 0.
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Proof. Consider the mapping space functor MapB(-, -) : Bc,op × Bc → S and the
functor π0 MapB(-, -) : Bc,op × Bc → S, obtained from composing MapB(-, -) with
the functor S

π0−→ N(Set) ↪→ S taking connected components. Given X, Y ∈ B,
we denote by (π0 MapB)CY(X, Y ) ⊂ π0 MapB(X, Y ) the subset of homotopy classes
of morphisms, satisfying that their image under G is a zero morphism in A. Since
zero morphisms are closed under composition, we find that (π0 MapB)CY(-, -) defines
a subfunctor of π0 MapB(X, Y ). We define the Calabi–Yau mapping space functor
MapCY

B (-, -) : Bc,op ×Bc → S as the pullback of the diagram

MapB(-, -)

(π0 MapB)CY(-, -) π0 MapB(-, -)

in Fun(Bc,op×Bc, S). Using the fully-faithfulness of the Yoneda embedding, we can
define a functor MorCY

B (-, -) : Bc,op ×Bc → D(κ) via

MapD(κ)(C,MorCY
B (-, -)) ≃ MapCY

B (-⊗ C, -) .

The natural transformation MapCY
B (-, -) ⊂ MapB(-, -) induces a natural transforma-

tion η : MorCY
B (-, -) → MorB(-, -). Note that for any pair (X, Y ) ∈ Bc,op × Bc, the

natural transformation η evaluates on the i-th homology group to the inclusion

(π0 MapB)CY(X[i], Y ) ⊂ π0 MapB(X[i], Y ) . (56)

Using that any object in D(κ) is equivalent to its homology, which is the direct sum
of suspensions of copies of κ, we find that the inclusion MorCY

B (X, Y ) ⊂ MorB(X, Y )
of the Calabi–Yau morphism object evaluates on the i-th homology group to the
inclusion (56). This implies that the functor MorCY

B (-, -) indeed describes the Calabi–
Yau morphism objects and η evaluates pointwise to their inclusion. This shows part
(1).

Part (2) follows from the fact that on i-th homology, η exhibits Exti,CY
B (-, -) as

the desired maximal subfunctor of ExtiB(-, -), by the description in (56).

Recall that given A ∈ D(κ), we denote A∗ = MorD(κ)(A, κ). Given a k-vector
space B, we denote B∗ = HomVectk(B, k).

Proposition 4.64. Let X, Y ∈ Bc be compact objects.

(1) There exists an equivalence in D(κ)

MorCY
B (X, Y ) ≃ MorCY

B (Y [−n], X)∗ ,

bifunctorial in X ∈ Bc,op and Y ∈ Bc.

(2) There exists an equivalence in N(Vectk)

Exti,CY
B (X, Y ) ≃ Extn−i,CY

B (Y,X)∗ ,

bifunctorial in X ∈ Bc,op and Y ∈ Bc.
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Part (2) of Proposition 4.64 should be seen as a relative version of the triangu-
lated n-Calabi–Yau property. We postpone the proof of Proposition 4.64 to the end
of this subsection.

Let (B,B†,B
†) be the exact∞-category obtained by pulling back the split-exact

structure on A, see Example 4.53. We denote by (hoBc,Ext1,CY
B , s) the arising ex-

triangulated homotopy category. Here, we use that Ext1,CY
B describes the extensions

in this extriangulated category, as follows from Lemma 4.65. To be precise, we also
abuse notation by labeling by Ext1,CY

B the second functor in the factorization

Ext1,CY
B : Bc,op ×Bc −→ hoBc,op × hoBc −→ N(Vectk) .

Lemma 4.65. Let X, Y ∈ Bc. Consider a fiber and cofiber sequence X → Z
α−→ Y in

B and let β : X → Y [1] be the cofiber morphism of α. Then β lies in Ext1,CY
B (X, Y ) ⊂

Ext1
B(X, Y ) if and only if the image of the fiber and cofiber sequence under G splits.

Proof. We show that the fiber and cofiber sequence G(X) → G(Z) G(α)−−→ G(Y )
splits if and only if the cofiber morphism G(β) vanishes. By definition, the latter is
equivalent to β being a Calabi–Yau extension. The forward implication is clear. For
the converse, suppose that G(β) is zero. Then its fiber morphism, given by G(α),
is equivalent to G(X) ⊕ G(Y ) (0,id)−−−→ G(Y ). This shows that the fiber and cofiber
sequence splits.

Proposition 4.66. The extriangulated category (hoBc,Ext1,CY
B , s) is Frobenius and

extriangled 2-Calabi–Yau. The exact ∞-category (Bc,Bc
†,B

c,†) is hence also Frobe-
nius.

Proof. The Frobenius property is shown in Proposition 4.54. The statement about
the 2-Calabi–Yau property follows directly from Proposition 4.64.

Remark 4.67. The proof of Proposition 4.54 shows that the suspension functor of
the stable ∞-category B̄c arising from (Bc,Bc

†,B
c,†), see Proposition 4.49, acts on

objects as the twist functor of the spherical adjunction G ⊣ H, or by the relative
2-Calabi–Yau structure equivalently as the delooping (or negative shift) of the Serre
functor of B.

It is an interesting problem to determine whether B̄c inherits a weak right 2-
Calabi–Yau structure from the relative weak right 2-Calabi–Yau structure of B.

We conclude this section with the proof of Proposition 4.64.

Proof of Proposition 4.64. Part (2) follows from part (1). We proceed with part (1).
Let H be the right adjoint of G and u: idB → HG be the unit. Note that there is
a commutative triangle as follows.

MapB(-1, -2) MapA(G(-1), G(-2))

MapB(-1, HG(-2))

G

u ◦ - ≃ (57)
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We thus have a commutative diagram in Fun(Bc,op ×Bc,D(κ))

MorCY
B (-1, -2) MorB(-1, -2)

0 MorB(-1, HG(-2)))

u ◦ -

which induces by the relative Calabi–Yau structure a natural transformation

ξ : MorCY
B (-1, -2)→ fib(u ◦ -) ≃ MorB(-1, id∗

B(-2)[−n]) .

Consider the natural transformation ν : MorCY
B (-1, -2)→ MorCY

B (-2[−n], -1)∗ appear-
ing in the following diagram.

MorB(-1, id∗
B(-2)[−n]) MorB(id∗

B(-2)[−n], id∗
B(-1))∗

MorCY
B (-1, -2) MorCY

B (id∗
B(-2)[−n], id∗

B(-1))∗ MorCY
B (-2[−n], -1)∗

≃

ξ

ν

≃

To prove part (1), we show that ν is a natural equivalence, meaning that it evaluates
at any pair X, Y ∈ Bc to an equivalence. Consider the sequence HG(Y )[−1] →
id∗

B(Y )[−n] → Y
u−→ HG(Y ) in Bc, where any three consecutive terms form a fiber

and cofiber sequence. Applying MorB(X, -), we obtain the upper sequence in D(κ)
in the following diagram.

MorB(X,HG(Y )[−1]) MorB(X, id∗
B(Y )[−n]) MorB(X, Y ) MorB(X,HG(Y ))

0 MorCY
B (X, Y ) MorCY

B (X, Y ) 0

α

id

Note that any three consecutive horizontal terms in the above diagram form a fiber
and cofiber sequence. Note also that the inclusions

MorCY
B (X, Y ) ⊂ MorB(X, id∗

B(Y )[−n]),MorB(X, Y )

split, as any morphism in D(κ) splits (into a direct sum of equivalences and zero
morphisms). It follows that the Calabi–Yau morphism object is the maximal si-
multaneous direct summand of both MorB(X, Y ) and MorB(X, id∗

B(Y )[−n]), being
preserved by α.

Using the natural equivalence MorB(-1, -2) ≃ MorB(-2, id∗
B(-1))∗, we see that the

upper part of the above diagram is equivalent to the upper parts of the following
diagram.
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MorB(HG(Y )[−1], id∗
B(X))∗ MorB(id∗

B(Y )[−n], id∗
B(X))∗

0 MorCY
B (id∗

B(Y )[−n], id∗
B(X))∗

δ β

id

(58)

MorB(Y, id∗
B(X))∗ MorB(HG(Y ), id∗

B(X))∗

MorCY
B (id∗

B(Y )[−n], id∗
B(X))∗ 0

β

id

(59)

The left adjoint F of G is given by (id∗
B[1 − n])−1 ◦ H, where id∗

B[1 − n] is
equivalent to the twist functor of the adjunction G ⊣ H, see [DKSS21, Corollary
2.5.16]. Furthermore by [Chr22d, Lemma 2.11], the morphism (from the above
sequence in Bc)

FG ◦ id∗
B(Y )[−n] ≃ HG(Y )[−1]→ id∗

B(Y )[−n]

is a counit morphism of the adjunction F ⊣ G, which is adjoint under FG ⊣ HG to
the unit of G ⊣ H. The morphism δ in the above sequence is thus equivalent to the
dual of the morphism

MorB(id∗
B(Y )[−n], id∗

B(X)) u ◦-−−→MorB(id∗
B(Y )[−n], HG ◦ id∗

B(X)) .
≃ MorB(FG ◦ id∗

B(Y )[−n], id∗
B(X))

≃ MorB(HG(Y )[−1], id∗
B(X))

arising from postcomposition with the unit u of G ⊣ H. Using the diagram (57),
this shows that the Calabi–Yau morphism object MorB(id∗

B(Y )[−n], id∗
B(X)) fits into

the diagrams (58) and (59) as indicated, such that the entire diagram formed by
(58) and (59) commutes. Again, the vertical morphisms split and it follows that
MorB(id∗

B(Y )[−n], id∗
B(X)) forms the maximal direct summand which is preserved

by β. This shows that the composite

MorCY
B (X, Y ) ↪→ MorB(X, id∗

B(Y )[−n])
≃ MorB(id∗

B(Y )[−n], id∗
B(X))∗

↠ MorCY
B (id∗

B(Y )[−n], id∗
B(X))∗

≃ MorCY
B (Y,X[n])∗

and hence also ν evaluated at (X, Y ) are equivalences. This concludes the proof of
part (1) and the proof.
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5 Ginzburg algebras of n-angulated surfaces
We begin in Section 5.1 with introducing Ginzburg algebras of quivers with poten-
tials and their relative higher variants associated with n-angulated surfaces. We
then discuss in Section 5.2 spherical adjunctions arising from ∞-categories of local
systems on the n-sphere Sn, and how the arising ∞-categories can be described al-
gebraically. This provides preparatory computations for Section 5.3, where we show
that the derived ∞-categories of relative Ginzburg algebras of n-angulated surfaces
arise as the global sections of perverse schobers build from these spherical adjunc-
tions. We also construct relative Calabi–Yau structures on the derived categories of
the relative Ginzburg algebras in Section 5.3.3.

In Section 5.4, we describe how one can associate to each suitable curve in the
surface a global section of these perverse schobers, i.e. a module over the Ginzburg
algebras. In Section 5.5, we then describe the morphism objects between the global
sections associated with such curves in terms of the intersections of the curves.
Sections 5.4 and 5.5 together build the foundation of a so called partial geometric
model for the derived∞-category of the relative Ginzburg algebra of an n-angulated
surface.

First applications of this geometric model are given in Section 5.6. We describe in
Section 5.6.1 the homology of the relative Ginzburg algebras in terms of the Jacobian
gentle algebras. In Section 5.6.2, we associate to each flip of the n-angulation a
derived equivalence of the global sections of the corresponding perverse schobers
and describe the action of this equivalence in terms of the partial geometric model.
In the final Section 5.6.3, we show that the extended mutation matrices of cluster
algebras with coefficients associated with multi-laminated surface can be recovered
in terms of the Euler-characteristics of Ext-groups in the derived category of the
relative Ginzburg algebra.

5.1 Introduction to Ginzburg algebras
5.1.1 The Ginzburg algebra of a quiver with potential

We begin by recalling the definition of the Ginzburg algebra associated with a quiver
with potential. References include [Gin06, KY11, Kel11]. Let Q be a finite quiver
and k a commutative ring. We denote by kQ the k-linear path algebra of Q (without
taking any completions).

Definition 5.1. A potential W of Q is an element of kQ consisting of a k-linear
sum of cycles, meaning paths which begin and end at the same vertex.

Let c ∈ kQ be a cycle and a an arrow of Q. We define the cyclic derivative of c
at a as

∂ac :=
∑
c=uav

vu ,

where the sum runs over all paths u, v (possibly lazy paths), such that c = uav.
The cyclic derivative acts on potentials by extending the action on cycles k-linearly.
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Quivers with potential may be considered up to cyclic equivalence, as the cyclic
derivative does not change under cyclic equivalence, see for instance [KY11] for
background.

Definition 5.2. Let (Q,W ) be a quiver with potential. Let Q̄ be the graded quiver
with the same vertices as Q and

• an arrow a : i→ j in degree 0 for each arrow a : i→ j in Q,

• an arrow a∗ : j → i in degree 1 for each arrow a : i→ j in Q,

• a loop li : i→ i in degree 2 for each vertex i of Q.

We define the Ginzburg dg-algebra G(Q,W ) as the graded path algebra kQ̄ with
differential determined on generators by

• d(a) = 0 for all arrows a in Q,

• d(a∗) = ∂aW for all arrows a in Q,

• d(li) = ∑
a ei(aa∗−a∗a)ei, where sum runs over all arrows in Q, and ei denotes

the lazy path at the vertex i.

The zero’th homology J(Q,W ) := H0 G(Q,W ) is called the Jacobian algebra of (Q,W ).

Many sources also consider the complete version of the dg-algebra G(Q,W ), ob-
tained by replacing kQ̄ with the path algebra completed at the ideal generated by
the arrows. Under some mild assumptions on the potential W , the dg-algebra G(Q,W )
is left 3-Calabi–Yau, see [Kel11,Yeu16].

Given a quiver with potential (Q,W ), such that Q has no loops or 2-cycles,
one can mutate it at any vertex v of Q, yielding a new quiver with potential, see
[DWZ08]. Such a quiver encodes a skew-symmetric mutation matrix, and the process
of mutation corresponds to matrix mutation in the sense of Definition 6.40. A quiver
with potential (Q,W ), where Q has no loops or 2-cycles, is called non-degenerate if
under repeated mutations no quivers with 2-cycles appear. Quiver mutation induces
a derived equivalence between the corresponding Ginzburg algebras, see [KY11].

An interesting class of quivers with potentials, and thus of Ginzburg algebras,
arises from marked surfaces equipped with an ideal triangulation (see Definition 6.31),
cf. [LF09,GLFS16]. We fix such a surface S. The vertices of the quiver Q are given
by the internal edges of the ideal triangulation, also referred to as arcs. The ar-
rows in Q are obtained by inscribing a clockwise triangle into each triangle. The
potential W = W ′ + W ′′ consists of two terms. The first term is W ′ = ∑

f T (f),
where the sum runs over the interior faces of the triangulation and T (f) denotes
the clockwise 3-cycle inscribed into the face. The second term W ′′ = ∑

p∈P cp is
the sum of the counterclockwise n-cycles obtained by going around the punctures
in S. One may also consider the quiver with potential (Q,W ′), with the caveat that
this quiver with potential is degenerate in most cases. The operation of mutation of
quiver with potential corresponds geometrically to flipping the ideal triangulation,
see [LF09].
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5.1.2 Relative Ginzburg algebras from n-angulated surfaces

Before discussing relative Ginzburg algebras, we explain what we mean by n-angulated
marked surfaces. Given a marked surface S with a spanning graph Γ, we can pass
to its dual graph Γdual with vertices and edges as follows:

• The set of vertices of Γdual is the set of marked points M ⊂ S. There is hence
a vertex for each face of Γ, i.e. connected component of S\Γ.

• The edges of Γdual are in bijection with the edges of Γ, they are obtained by
connecting two vertices of Γdual for each edge lying in the intersection of the
corresponding faces. External edges of Γ give rise to edges of Γdual lying on
the boundary of S.

There is a canonical embedding of the realization of the dual graph |Γdual| ⊂ S.

Definition 5.3. A graph Γ is called n-valent if each vertex of Γ has valency n, i.e. n
incident halfedges. We mostly denote such graphs by T.

Given spanning graph Γ of a marked surface S, the embedding of the realization
of its dual graph |Γdual| ⊂ S decomposes S into polygons with vertices the marked
points and possibly self-folded edges. If Γ = T is furthermore n-valent, for some n ≥
3, these polygons are n-gons and this decomposition of S may be called an ideal n-
angulation. These generalize ideal triangulations of marked surfaces, corresponding
to the case n = 3, see also Definition 6.31. Examples of 4-angulated surfaces are
depicted in Figure 3.

Note that not all marked surfaces admit an ideal triangulation, and much less an
ideal n-angulation. For example, spheres with less than 3 punctures, the unpunc-
tured 1-gon and the unpunctured 2-gon do not admit an ideal triangulation.

The dual edges of loops of spanning graphs (i.e. internal edges whose two end-
points coincide) are precisely the self-folded edges of the dual decomposition into
polygons.

We fix a marked surface S, a commutative ring k and n ≥ 3. Definition 5.4
defines the relative higher Ginzburg algebra associated with an n-valent spanning
graph T of S.

Definition 5.4. Let T be an n-valent spanning graph of S. We define a graded
quiver Q̃T with vertices the edges of T and the following graded arrows.

• An arrow av,i,j : i → j of degree l − 1 for each vertex v ∈ T0 at which a
halfedge of i follows a halfedge of j in the (counterclockwise) cyclic order after
1 ≤ l ≤ n − 1 steps. The arrows thus go in the clockwise direction and the
loops of T give rise to loops.

• A loop Li : i→ i of degree n− 1 for each internal edge i.

Given two edges i, j ∈ T1 incident to v ∈ T0, we denote by j− i ∈ {0, . . . , n− 1} the
number of steps after which i follows j in the cyclic order at v.
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The relative Ginzburg algebra GT is defined as the dg-algebra with underlying
graded algebra kQ̃T and with differential d determined on the generators as follows.

For the generators av,i,j, we set
d(av,i,j) =

∑
j<k<i

(−1)j−k−1av,k,jav,i,k ,

where the sum runs over all edges k appearing between j and i in the cyclic order.
For an internal edge i incident to two (possibly identical) vertices v1, v2 ∈ T0, we set

d(Li) =
∑
j ̸=i

(−1)j−iav1,j,iav1,i,j + (−1)n−1∑
j ̸=i

(−1)j−iav2,j,iav2,i,j . (60)

Note that we implicitly chose and order of v1, v2, but making a different choice
changes GT only up to isomorphism of dg-algebras (by mapping Li by −Li).
Remark 5.5. The formula for the differential of av,i,j in Definition 5.4 should be
regarded as some version of graded cyclic derivative of a potential

W ′
T =

∑
v∈T0

∑
j<k<i

±av,k,jav,i,kav,j,i .

Example 5.6. For n = 3, 4, let S be the n-gon and T the unique n-valent spanning
graph. The graded algebras underlying the relative Ginzburg algebras GT are given
by the path algebras of the following graded quivers. The labels indicate degrees.

·

· ·

0

1

0

1

0

1

·

· ·

·

0

2

1

0

2

1

0

2

1

0

2

1

The differentials of the arrows in degree 0 vanish and the differential of an arrow
a : x → y of degree m consists, modulo signs, of the sum of all paths composed of
two arrows of degrees less than m which compose to a path x→ y.

An ice quiver with potential (Q,F,W ) consists of a quiver with potential (Q,W )
together with a subquiver F of Q, whose vertices and edges are referred to as
frozen. Yilin Wu has recently extended the definition of Ginzburg algebra to relative
Ginzburg algebras associated with ice quivers with potential, see [Wu23b, Wu23a].
Wu also considers ’higher’ versions of relative Ginzburg algebras associated with
quivers with potential. Wu shows in [Wu23b] that these are equivalent to the rel-
ative n-Calabi–Yau completions of [Yeu16], which implies that these are relative
(weakly) left n-Calabi–Yau. The relative Ginzburg algebras associated with trian-
gulated surfaces defined above are special cases of Wu’s more general setup. Here,
the underlying ice quiver with potential arises from a variant of the quiver with po-
tential of Section 5.1.1: the difference is that the boundary edges of the triangulation
are included as frozen vertices in the quiver. The relative Ginzburg algebras asso-
ciated with n-angulated surfaces are of a more general kind (they are for instance
not always Calabi–Yau).
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5.2 Spherical adjunctions from local systems on Sn

By a spherical fibration f : X → Y , we mean a Kan fibration between Kan complexes
whose fiber is homotopy equivalent to the singular set of the topological m-sphere,
for some m ≥ 0, denoted Sm. We also refer to Sm ∈ S as the m-sphere. Given a
stable∞-category D, we call the∞-category of functors Fun(Sm,D) the∞-category
of D-valued local systems on Sm. The fibration f induces a pullback functor

f ∗ : Fun(Y,D) −→ Fun(X,D) ,

which admits left and right adjoints f!, f∗, see [Chr22d, Section 3.2]. The functor f!
is given by left Kan extension and the functor f∗ is given by right Kan extension.
The sphericalness of the fibration f implies that f ∗ ⊣ f∗ is spherical:

Theorem 5.7 ([KS14, Chr22d]). Let f : X → Y be a spherical fibration and D a
stable ∞-category. Then the adjunction

f ∗ : Fun(Y,D)←→ Fun(X,D) :f∗

is spherical.

In the following, we consider the apparent spherical fibration f : Sn−1 → ∗ with
n ≥ 3. We further specialize to the case that D = RModR is the symmetric
monoidal ∞-category of right module spectra over an E∞-ring spectrum R. The
arising spherical functor f ∗ will be used to construct the perverse schobers studied
in the following sections.

Remark 5.8. Let Z be a simplicial set and R an E∞-ring spectrum. The ∞-
category Fun(Z,RModR) admits a symmetric monoidal structure, such that the
pullback functor h∗ along h : Z → ∗ is a symmetric monoidal functor, see for example
[Chr22d, Section 3.3]. We can thus consider Fun(Z,RModR) as a left module in
PrLSt over itself and the functor h∗ as a morphism of algebra objects in PrL. Pulling
back along h∗ provides Fun(Z,RModR) with the structure of a left module over
RModR and thus with the structure of a left-tensoring over RModR. This shows
that Fun(Z,RModR) is an R-linear∞-category such that the functor h∗ is R-linear.

Our goal is to find an algebraic description of the ∞-category of local systems
Fun(Sn−1,RModR). We denote by R[tn−1] the free algebra object in RModR gen-
erated by R[n − 1]. Note that if R = k is a commutative ring, there exists an
equivalence R[tn−1] ≃ k[tn−1], where k[tn−1] denotes the graded polynomial algebra,
with generator in degree |tn−1| = n− 1.

We let L denote the simplicial set consisting of a single vertex and a single
non-degenerate 1-simplex. We use Remark 5.8 to lift Fun(L,D(k)) to a k-linear
∞-category.

Lemma 5.9. Consider the morphism of simplicial sets g : L→ ∗ and the associated
pullback functor g∗ : RModR → Fun(L,RModR). There exists an equivalence of
R-linear ∞-categories

Fun(L,RModR) ≃ RModR[t0]
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such that the following diagram commutes.

RModR

Fun(L,RModR) RModR[t0]

g∗ ϕ∗

≃

(61)

Here ϕ∗ denotes the pullback functor along the morphism of R-algebras R[t0]→ R,
determined on the generator by the morphism R

id−→ R in RModR.

Proof. Consider the objectX ∈ Fun(L,RModR) given by the diagramR[t0] ·t0−→ R[t0]
in RModR. Let h : ∗ → L be the morphism of simplicial sets given by inclusion
of the unique vertex and consider the associated pullback functor h∗ : RModR →
Fun(L,RModR) with right adjoint h∗ given by evaluation at ∗ ∈ L. We prove that
X ≃ h∗(R) by showing that MorFun(L,RModR)(X, -) ≃ h∗.

Let Y ∈ Fun(L,RModR). The morphism object MorFun(L,RModR)(X, Y ) is equiv-
alent to the equalizer

∏
i∈N h∗(Y ) MorR(R[t0], Y ) MorR(R[t0], Y ) ∏

i∈N h∗(Y )≃ (-)◦t0

Y (l)◦(-)

≃ ,

where l is the unique non-degenerate 1-simplex of L. This can be seen as follows.
Consider the simplicial set L′ consisting of four vertices x1, x2, x3, x4 and four non-
degenerate 1-simplicies l1, l2, l3, l4 arranged as follows.

x1 x3

x4 x2

l1

l4 l2
l3

The morphism of simplicial sets p : L′ → L, mapping all vertices to ∗ ∈ L, l1 to
l and l2, l3, l4 to the degenerate 1-simplex, induces a fully faithful R-linear functor
p∗ : Fun(L,RModR)→ Fun(L′,RModR). The description of

MorFun(L,RModR)(X, Y ) ≃ MorFun(L′,RModR)(p∗(X), p∗(Y ))

as an equalizer can now be obtained by using a pushout description of p∗(X) ≃
X1 ⨿X3 X2, with

X1 =
R[t0] R[t0]

R[t0] 0

≃
≃ , X2 =

0 R[t0]

R[t0] R[t0]
≃

≃
, X3 =

0 R[t0]

R[t0] 0

and that MorFun(L′,RModR)(-, p∗(Y )) is an exact functor. The equalizer is given by
h∗(Y ), the morphism of R-modules h∗(Y ) → ∏

i∈N h∗(Y ) is informally given by
mapping z ∈ h∗(Y ) to (Y (l)i(z))i∈N ∈

∏
i∈N h∗(Y ). We note that the equivalence
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MorFun(L,RModR)(X, Y ) ≃ h∗(Y ) is functorial in Y , so that we find the desired equiv-
alence MorFun(L,RModR)(X, -) ≃ h∗.

It follows that X is a compact generator of Fun(L,RModR). Applying [Lur17,
4.1.1.18], we further obtain an equivalence of R-linear ring spectra EndR(X) ≃ R[t0],
showing the existence of an equivalence of R-linear∞-categories Fun(L,RModR) ≃
RModR[t0].

The commutativity of the diagram (61) can be checked using the fact that the
R-linear functors ϕ∗, g∗ : RModR → RModR[t0] are fully determined by ϕ∗(R), re-
spectively g∗(R), see [Lur17, Section 4.8.4].

We denote by i : ∗ → Sn−1 the inclusion of any point and the corresponding
pullback functor by i∗ : Fun(Sn−1,RModR)→ RModR. The functor i∗ admits a left
adjoint i!. Similarly, g! denotes the left adjoint of the pullback functor g∗.

Lemma 5.10.

1. There exists a pushout diagram in LinCatR as follows.

Fun(L,RModR) RModR

RModR Fun(S2,RModR)

g!

g! ⌜
i!

i!

(62)

2. Let m ≥ 2. There exists a pushout diagram in LinCatR as follows.

Fun(Sm−1,RModR) RModR

RModR Fun(Sm,RModR)

f!

f! ⌜
i!

i!

(63)

Proof. We begin by showing statement 2. Consider the following pushout diagram
of spaces.

Sm−1 ∗

∗ Sm

f

f
⌜

i

i

The above diagram is also pushout in Cat∞. Applying the limit preserving functor
Fun(-,RModR) : Catop∞ → Cat∞, we obtain from this pushout diagram the following
pullback diagram in PrR.

Fun(Sm,RModR) RModR

RModR Fun(Sm−1,RModR)

i∗

i∗
⌟

f∗

f∗
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The left adjoint diagram is the diagram (63) and thus pushout in LinCatR.
We proceed with showing statement 1. The geometric realization of L is equiv-

alent to the topological 1-sphere. There thus exists a morphism of simplicial sets
ι : L→ S1 such that the limit functor g∗ = lim: Fun(L,RModR)→ RModR restricts
via the fully faithful pullback functor ι∗ : Fun(S1,RModR) → Fun(L,RModR) to
the limit functor f∗. The left adjoint g∗ : RModR → Fun(L,RModR) thus factors
through Fun(S1,RModR). It thus follows from the explicit model for limits in Cat∞
that the right adjoint diagram of diagram (62) is pullback in PrR. It follows that
the diagram (62) is pushout in LinCatR.

Proposition 5.11. Let n ≥ 3. There exists an equivalence of R-linear∞-categories

Fun(Sn−1,RModR) ≃ RModR[tn−2] , (64)

such that the following diagram in LinCatR commutes.

Fun(Sn−1,RModR) RModR[tn−2]

RModR

Fun(Sn−1,RModR) RModR[tn−2]

≃

i∗

G

f∗ ϕ∗

≃

(65)

Here G denoted the monadic functor and ϕ∗ the pullback functor along the morphism
of R-algebras ϕ : R[tn−2]→ R determined on the generator by the morphism R[n−
2] 0−→ R in RModR.

Proof. Let m ≥ 1 and consider the following biCartesian square in RModR.

R[m− 1] 0

0 R[m]
□

Applying the colimit preserving free R-algebra functor RModR → Alg(RModR)
yields the following pushout diagram of R-algebras.

R[tm−1] R

R R[tm]

tm−1 7→0

tm−1 7→0
⌜

(66)

Consider the morphism of ring spectra R[t0] t0 7→t0+1−−−−−→ R[t0], determined via the
universal property by the morphism R

1 7→1+t0−−−−→ R[t0] in RModR. Using the commu-
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tativity of the diagram
R[t0] R

R[t0]

t0 7→1

t0 7→t0+1
t0 7→0

and Lemma 5.9, it follows that for m = 1 the image of the diagram (66) under the
functor θ : Alg(RMod) → LinCatR, see Section 2.1.4, is equivalent to the pushout
diagram in (62). It follows that there exists an equivalence of R-linear∞-categories
Fun(S2,RModR) ≃ RModR[t1]. Using that the monadic functor G is equivalent to
the pullback along R → R[t1], we obtain that the upper half of the diagram (65)
commutes.

Since f ◦ i = id: ∗ → ∗, we have that f! ◦ i! ≃ idRModR , and thus obtain the
following commutative diagram.

Fun(L,RModR) RModR

RModR Fun(S2,RModR)

RModR

⌜

g!

g! i! id
i!

id

f!

(67)

The diagram (67) is equivalent to the image under θ of the following diagram in
Alg(RModR).

R[t0] R

R R[t1]

R

⌜ id

id

(68)

By the universal property of the pushout in Alg(RModR) there exists a unique
morphism of ring spectra R[t1]→ R such that (68) commutes. Such a map is given
by ϕ. It follows that the functor f! is equivalent to θ(ϕ) and, using the adjunction
between θ(ϕ) and the pullback along ϕ, see [Lur17, 4.6.2.17], also that the functor
f ∗ is equivalent to the pullback functor along ϕ.

For m ≥ 3, we can continue by induction and as before. The image of (66) under
the functor θ is the pushout diagram in (63). We thus find the desired equivalence
Fun(Sm,RModR) ≃ RModR[tm−1] so that the upper half of diagram (65) commutes.
Analogous to the case m = 1, it can be checked that the lower half of the diagram
(65) commutes.

We next describe the twist functor TFun(Sn−1,RModR) of the adjunction ϕ! ⊣ ϕ∗.
For the full description, we restrict to the case that R = k is a commutative ring.
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Proposition 5.12. Let n ≥ 3.

(1) Let X ∈ RModR. There exist equivalences in Fun(Sn−1,RModR)

TFun(Sn−1,RModR)(f ∗(X)) ≃ f ∗(X)[1− n] ,
TFun(Sn−1,RModR)(i∗(X)) ≃ i∗(X)[1− n] .

(2) Assume that R = k is a commutative ring and consider the morphism of dg-
algebras

φ : k[tn−2]
tn−2 7→(−1)ntn−2−−−−−−−−−−→ k[tn−2] .

There exists a commutative diagram in LinCatk as follows:

Fun(Sn−1,RModk) Fun(Sn−1,RModk)

RModk[tn−2] RModk[tn−2]

TFun(Sn,RModk)

≃(64) ≃(64)

φ∗[1−n]

Proof. We begin with the proof of part (1). Let TRModR be the twist functor of the ad-
junction f ∗ ⊣ f∗. The description of image under the cotwist TFun(Sn−1,RModR)(f ∗(X))
directly follows from the equivalences of functors f ∗TRModR ≃ TFun(Sn−1,RModR)f

∗,
see [Chr22d, Lemma 2.2], and TRModR ≃ [1− n], see [Chr22d, Section 3.1].

For the description of TFun(Sn−1,RModR)(i∗(X)), we begin by recalling some nota-
tion from [Chr22d, Section 3.1], where the sphericalness of the adjunction f ∗ ⊣ f∗
is proven. Given a simplicial set Z, we denote by Z▷ = Z ∗∆0 the simplicial join.
Consider the recursively defined simplicial sets P0 = S0 = ∆0 ⨿∆0 and

Pn := P ▷
n−1

∐
Pn−1

P ▷
n−1 .

We denote any vertex in Pn\Pn−1 by n. Let g : Pn → ∗ and g∗ : D→ Fun(Pn,D) be
the pullback functor with right adjoint g∗ given by the limit functor. The∞-category
Fun(Sn−1,RModR) embeds fully faithfully into Fun(Pn,RModR), with image the
functors mapping all edges in Pn to equivalences in RModR, and the adjunction
g∗ ⊣ g∗ restricts to f ∗ ⊣ f∗ along this inclusion. Consider the simplicial sets

Z1 = {n} ×∆1 ⨿{n}×∆{1} Pn ×∆{1}

Z2 = (Pn\{n})×∆1 ⨿(Pn\{n})×∆{0} Pn ×∆{0}

Z3 = Pn ×∆1

We define the following ∞-categories via Kan extensions.

• Let D1 ⊂ Fun(Z1,RModR) be the full subcategory spanned by right Kan
extensions along Pn ×∆{1} ↪→ Z1.

• Let D2 ⊂ Fun(Z2,RModR) be the full subcategory spanned by left Kan ex-
tensions along Pn ×∆{0} ↪→ Z2.
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• Let D′
1 ⊂ Fun(Z3,RModR) be the full subcategory spanned by left Kan ex-

tensions along Z1 → Z3 of functors in D1.

• Let D′
2 ⊂ Fun(Z3,RModR) be the full subcategory spanned by right Kan

extensions along Z2 → Z3 of functors in D2.

The diagrams in D′
1 have the property that their restriction to Pn ×∆{0} is every-

where zero, except at (n, 0), where their value is identical to their value at (n, 1).
Similarly, the diagrams in D′

2 have the property that their restriction to Pn ×∆{1}

is equivalent to the their restriction to Pn ×∆{0}, expect for having value 0 at the
vertex (n, 1). For i = 1, 2, the functors

Ri : D′
i → Di → Fun(Pn ×∆{1},RModR)

are trivial fibrations by [Lur09, 4.3.2.15]. We can thus choose an essentially unique
section of Ri, denoted R−1

i . Consider the functor

colim∆1 : Fun(Z3,RModR) ≃ Fun(∆1,Fun(Pn,RModR)) Fun(∆1,colim)−−−−−−−−→ Fun(∆1,RModR)

We find that the composite of R−1
1 and the restriction of colim∆1 to D′

1 describes a
natural transformation η : i∗ → f!. The cofiber of this natural transformation in the
∞-category Fun(Fun(Sn−1,RModR),RModR) can be described as the composite ν
of R−1

2 , lim∆1 restricted to D′
2 and the evaluation functor at 1 ∈ ∆1. A small

computation reveals that ν is equivalent to i∗[n− 1].
Passing to right adjoints, we obtain a fiber and cofiber sequence i∗[1−n]→ f ∗ →

i∗ in Fun(RModR,Fun(Sn−1,RModR)), which evaluated at X ∈ RModR yields a
fiber and cofiber sequence i∗(X)[1 − n] → f ∗(X) α−→ i∗(X). Composing with the
equivalence f ∗(X) ≃ f ∗f∗i∗(X), one sees that the morphism α is a counit map
of the adjunction f ∗ ⊣ f∗. It thus follows TFun(Sn−1,RModR)(i∗(X)) ≃ i∗(X)[1 − n],
concluding the proof of part (1).

We proceed with the proof of part (2). The dg-category of k[tn−2]-bimodules is
equivalent to the dg-category dgMod(k[tn−2]⊗k k[tn−2]op). The former dg-category
thus inherits a model structure from the projective model structure of the latter,
whose underlying ∞-category is equivalent to the ∞-category of k-linear endofunc-
tors of RModk[tn−2]. Let ⊙ denote the multiplication in k[tn−2]. We denote by k̂[tn−2]
the k[tn−2]-bimodule k̂[tn−2] with

• underlying chain complex k[tn−2],

• left action on a ∈ k̂[tn−2] determined by tin−2.a = (−1)intin−2 ⊙ a and

• right action on a ∈ k̂[tn−2] determined by a.tin−2 = a⊙ tin−2 .

Note that φ∗ ≃ - ⊗k[tn−2] k̂[tn−2]. We can thus prove part (2) by showing that the
composite of the twist functor T ′

Fun(Sn−1,RModk) of the spherical adjunction f! ⊣ f ∗

129



with the equivalence (64) is equivalent to -⊗ k̂[tn−2][n−1]. Using the commutativity
of the lower part of diagram (65), it suffices to show that the twist functor T of the
spherical adjunction ϕ! ⊣ ϕ∗ is equivalent to -⊗ k̂[tn−2][n− 1].

We find ϕ∗ϕ!(k[tn−2]) ≃ k ∈ RModk[tn−1], with k the trivial k[tn−2]-module. The
k-linear functor ϕ∗ϕ! is thus equivalent to the functor - ⊗k[tn−2] k, for a k[tn−2]-
bimodule k. There is but a unique such bimodule, which carries the action tn−2.1 =
0 = 1.tn−2 ∈ k. A cofibrant replacement of the k[tn−2]-bimodule k is given the cone
of the morphism of bimodules

α : k̂[tn−2][n− 2]→ k[tn−2] .

tin−2 7→ ti+1
n−2

To see that α indeed defines a morphism of bimodules, note that by the definition of
k̂[tn−2] and the sign rule for the shift of left modules, see Remark 2.15, the left action
of k[tn−2] on k̂[tn−2][n−2] is determined by tn−2.1 = (−1)(n−2)+(n−2)tn−2 = tn−2. We
deduce that the twist functor T is equivalent to the functor given by tensoring with
the homotopy pushout in the following diagram of cofibrant k[tn−2]-bimodules.

k[tn−2] cone(α)

0 k̂[tn−2][n− 1]
⌜

We have shown T ≃ -⊗k[tn−2] k̂[tn−2][n− 1], as desired.

Lemma 5.13. There exists an equivalence of R-modules

End(f ∗(R)) = MorFun(Sn−1,RModR)(f ∗(R), f ∗(R)) ≃ R⊕R[1− n] .

Proof. The R-linear functor f ∗ : RModR → Fun(Sn−1,RModR) is fully determined
by the image of R, see [Lur17, Section 4.8.4], and thus equivalent to the R-linear
functor

-⊗R f ∗(R) : RModR → Fun(Sn−1,RModR) .
Its right adjoint f∗ is equivalent to MorFun(Sn−1,RModR)(f ∗(R), -). The equivalence
f∗f

∗(R) ≃ R⊕R[1− n] is shown in [Chr22d, Section 3.1].

5.3 Ginzburg algebras and perverse schobers
Fix a marked surface S with n-valent spanning graph T and a choice of E∞-ring
spectrum R. In the following construction, we describe a T-parametrized perverse
schober FT(R), with the property that its∞-category of global sections H(T,FT(R))
is equivalent to D(GT), if R = k is a commutative ring, see Theorem 5.15.
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Construction 5.14. Locally at each vertex of T, the perverse schober FT(R) is
described by the spherical adjunction

ϕ∗ : RModR ←→ RModR[tn−2] :ϕ∗

where R[tn−2] denotes the free R-linear ring spectrum generated by R[n − 2] and
ϕ∗ is the pullback along the morphism of ring spectra ϕ : R[tn−2]

tn−2 7→0−−−−→ R. Note
that we can by Proposition 5.11 equivalently locally describe the perverse schober in
terms of the spherical adjunction f ∗ : RModR ←→ Fun(Sn−1,RModR) :f∗, arising
form the pullback functor along f : Sn → ∗. We will freely pass between these two
perspectives, as they are each particularly convenient in different situations.

We thus want to define FT(R) as the gluing of the local perverse schobers
Fv(ϕ∗) : Cv → St, i.e. as the diagram Exit(T)→ St which restricts at Cv to Fv(ϕ∗),
see also Proposition 3.25. Note that this definition involves choosing for each vertex
of T a total order of its incident halfedges, compatible with their given cyclic order.
These choices change the monodromy of FT(R), at least if n is odd, and we need to
slightly modify the perverse schobers Fv(ϕ∗), to remove this monodromy. This also
ensures that we match the signs in the differentials of the Ginzburg algebras later
on.

For each edge e of T, we consider its two incident (possibly identical) vertices
v1, v2. We denote by i1 ∈ {1, . . . , n} the position of the halfedge of e lying at v1
in the chosen total order of the n halfedges incident to v1. We similarly denote by
i2 ∈ {1, . . . , n} the position of the halfedge of e at v2 in the chosen total order of
halfedges at v2. If i1 − i2 is even, we change Fv1(ϕ∗) by composing Fv1(ϕ∗)(v1 → e)
with the autoequivalence T of RModR[tn−2], given by the the pullback functor along
the morphism of ring spectra R[tn−2]

tn−2 7→(−1)ntn−2−−−−−−−−−−→ R[tn−2]. Note that for R = k
a commutative ring, the functor T [n − 1] is equivalent to the cotwist functor of
ϕ∗ ⊣ ϕ∗, see [Chr22b, Prop. 5.7], and further T ≃ idRModk[tn−2] if n is even. If i1 − i2
is odd, we do nothing. The perverse schober FT(R) is now defined as the gluing of
the above modifications of the Fv(ϕ∗)’s. If R = k is a commutative ring, we also
sometimes write FT for FT(k).
Theorem 5.15. There exists an equivalence of ∞-categories

H(T,FT(k)) ≃ D(GT) (69)

between the ∞-category of global sections of FT(k) and the derived ∞-category of
the relative Ginzburg algebra GT.

Sections 5.3.1 and 5.3.2 are dedicated to the proof of Theorem 5.15. Section 5.3.3
discusses relative Calabi–Yau structures on H(T,FT(k)).

5.3.1 Local computations

We again fix a commutative ring k and n ≥ 3. We refer to Section 2.2.1 for
the sign conventions on dg-modules, cones and shifts. Consider the morphism
ϕ : k[tn−2]

tn−2 7→0−−−−→ k from Proposition 5.11.
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Lemma 5.16. Let

Am =



k k[1− n] 0 . . . 0 0
0 k[tn−2] k[tn−2] 0 . . . 0
0 0 k[tn−2] k[tn−2] . . . 0
... ... ... . . . ... ...
0 0 0 . . . k[tn−2] k[tn−2]
0 0 0 . . . 0 k[tn−2]


be the upper triangular dg-algebra. There exists an equivalence of ∞-categories

Vmϕ∗ ≃ D(Am) (70)

Proof. Spelling out the definition of Vmϕ∗ , this immediately follows from Proposi-
tion 2.46 by using that ϕ∗ ≃ ϕ![1− n] = ladj(ϕ∗)[1− n] ≃

(
-⊗k[tn−2] k

)
[1− n].

Remark 5.17. Consider the graded quiver Qm

x0 x1 . . . xm−1
a0,1 a1,2

l1

am−2,m−1

lm−1

(71)

with |ai,i+1| = 0 and |li| = n − 2. The dg-algebra Am is Morita-equivalent to the
dg-category Bm with objects the vertices of Qm and morphisms freely generated by
the arrows of Qm subject to the relations l1 ◦ a0,1 = 0, ai+1,i+2 ◦ ai,i+1 = 0 for i ≥ 0
and ai,i+1li = li+1ai,i+1 for i ≥ 1.

For m ≥ 3, we define Dm to be the dg-category with objects z1, . . . , zm and
morphisms freely generated by bi,j : zi → zj for all i ̸= j in degree j − i− 1 if j > i
and n+ j − i− 1 if j < i and with differentials determined by

d(bi,j) =

∑
i<k<j(−1)j−k+1bk,jbi,k if j > i ,∑
i<k≤m(−1)j−k+n+1bk,jbi,k +∑

1≤k<j(−1)j−k+1bk,j ◦ bi,k if j < i .

Note that if m = n, the dg-category Dm is Morita equivalent to the relative Ginzburg
algebra of the n-gon, and is depicted in the cases m = n = 3 and m = n = 4 in
Example 5.6.

Lemma 5.18. The homology of the mapping complexes in Dm is given by

H∗ HomDm(zi, zj) ≃


0 j ̸= i, i+ 1
k[tn−2] j = i

k[tn−2] j = i+ 1
k[tn−2][n−m] j = 1, i = m
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Proof. Let c be a cycle in a morphism complex in Dm. We can decompose c into
the k-linear sum of morphisms composed of the generating morphisms of Dm. We
call the length of c the maximal number of generating morphisms appearing in a
summand of c. We show the following statements via an induction on the length of
c.

1) If c : zi → zi, then c is homologous to

λ

∑
j<i

(−1)n+j−ibj,ibi,j +
∑
i<j

(−1)j−ibj,ibi,j

l (72)

with λ ∈ k and l ∈ N.

2) If c : zi → zi+1, with i+ 1 considered modulo m, then c is homologous to

λbi,i+1

∑
j<i

(−1)n+j−ibj,ibi,j +
∑
i<j

(−1)j−ibj,ibi,j

l (73)

with λ ∈ k and l ∈ N.

3) Otherwise, c is nullhomologous.

We note that (72) and (73) define nonzero homology classes. One simple way to see
this is to observe that their image in Cm, see the proof of Proposition 5.19 below,
define nonzero homology classes. The assertion follows.

We continue with showing 1),2) and 3). We denote the cycles of the form (72)
by li and the cycles of the form (73) by bi,i+1li. We consider all indices i, j of the bi,j
modulo m.

We begin with 2), as it is the easiest case. We consider a cycle c : zi → zi+1.
Since the morphisms bj,l freely generate Dm, we can write c as c = ∑

k ̸=i+1 bk,i+1ui,k
for some chains ui,k. The condition d(c) = 0 implies d(ui,i+2) = 0. By the induction
assumption there exists a chain vi,i+2 with d(vi,i+2) = ui,i+2. We thus find

c+ (−1)n−1d(bi+2,i+1vi,i+2) =
∑

k ̸=i+1,i+2
bk,i+1

(
ui,k + (−1)sk,i+i−kbi+2,kvi,i+2

)

with sk,i = 0 if i + 2 < k ≤ m and sk,i = n if 1 ≤ k ≤ i. This shows that c is
homologous to a cycle c2 = ∑

k ̸=i+1,i+2 bk,i+1ui,k for some other chains also denoted
ui,k. Repeating this argument m − 2 times, we see that c is homologous to a cycle
of the form bi,i+1ui,i and by the induction hypothesis we find ui,i = li + d(vi,i) for
some chain vi,i. It follows that c is homologous to bi,i+1li, showing 2).

For 3), we consider a cycle c : zi → zj with j ̸= i, i + 1 and assume without
loss of generality that i < j. We write c = ∑

k ̸=j bk,jui,k for some chains ui,k with
d(ui,j+1) = 0. If j+1 ̸= i, then by the induction assumption ui,j+1 = d(vi,j+1). As in
the case ii), we thus find that c is homologous to a cycle of the form ∑

k ̸=j,j+1 bk,jui,k
for some chains also labeled ui,k. Repeating this process a few times, we find that
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c is homologous to a cycle of the form ∑
k,̸=j,...,i−1 bk,jui,k with d(ui,i) = 0. Applying

the induction assumption, we find that ui,i = li + d(vi,i) for some chain vi,i. The
condition d(c) = 0 then implies that (−1)j−ibi+1,jbi,i+1li = bi+1,jd(ui,i+1). Since
bi,i+1li is not a boundary unless li = 0, it follows that li = 0. We obtain that c is
homologous to ∑k ̸=j,...,i bk,jui,k, for some chains also labeled ui,k with d(ui,i+1) = 0. If
j = i+ 2, the assertion now follows and otherwise we argue as before to obtain that
c is homologous to ∑k,̸=j,...,i,i+1 bk,jui,k with d(ui,i+2) = 0. The induction assumption
implies that ui,i+2 is a boundary, from which we obtain that c is homologous to∑
k ̸=j,...,i+2 bk,jui,k for some chains also labeled ui,k. Repeating this argument a few

times, we can finally conclude that c is a boundary.
For 1), we consider a cycle c : zi → zi, which we can write as c = ∑

k ̸=i bk,iui,k for
some chains ui,k with d(ui,i+1) = 0. Using the induction assumption, we find a chain
vi,i+1 with ui,i+1 = d(vi,i+1) − bi,i+1li. It follows that c is homologous to a cycle of
the form c1 = ∑

k ̸=i,i+1 bk,iui,k − bi+1,ibi,i+1li for some other chains also labeled ui,k.
This constitutes the base case for an induction on j of the following assertion.

For all 1 ≤ j ≤ m− 1, the cycle c is homologous to

cj =
∑
k∈I

bk,iui,k +
 ∑

1≤k≤i+j−m<i
(−1)n+k−ibk,ibi,k +

∑
i<k≤i+j,m

(−1)k−ibk,ibi,k

 li ,
where I is the set of 1 ≤ k ≤ m such that k > i + j or k < i + j −m and the ui,k
are some chains.

For the induction step, we consider the case i + j ≤ m. The case i + j > m
is dealt with analogously. Suppose that c is homologous to cj. Evaluating the
condition d(cj) = 0 at the summands beginning with bi+j+1,i yields

0 = (−1)n−jbi+j+1,id(ui,i+j+1) +
 ∑
i<k≤i+j

(−1)n−j+k−ibi+j+1,ibk,i+j+1bi,k

 li ,
so that by the induction hypothesis (of the induction over the length of c) we have
ui,i+j+1 = d(vi,i+j+1) + (−1)j+1bi,i+j+1li for some chain vi,i+j+1. It follows that c is
homologous to cj+1. This completes the induction step. Setting j = m − 1, we
obtain that c is homologous to∑

k<i

(−1)n+k−ibk,ibi,k +
∑
i<k

(−1)k−ibk,ibi,k

 li
and thus of the form (72). This concludes the proof.

Proposition 5.19.

(1) There exists an equivalence of ∞-categories

Vmϕ∗ ≃ D(Dm) . (74)
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(2) For 1 ≤ i ≤ m − 1, the composite of the equivalence (74) with the functor
D(k[tn−2]) ≃ RModk[tn−2]

ςm−i+1−−−−→ Vmϕ∗ is equivalent to the image under D(-) of
the dg-functor ιi : k[tn−2]→ Dm determined by

ιi(tn−2) = (−1)m+in

∑
j<i

(−1)n+j−ibj,ibi,j +
∑
i<j

(−1)j−ibj,ibi,j

 .

Furthermore, if n = m, the composite of the equivalence (74) with the functor
D(k[tn−2]) ≃ RModk[tn−2]

ς1−→ Vmϕ∗ is equivalent to the image under D(-) of the
dg-functor ι0 : k[tn−2]→ Dm determined by

ιm(tn−2) = (−1)m
∑
j<m

(−1)n+j−mbj,mbm,j

 .

Proof. We recursively define objects yi+1 = cone(yi
αi−→ xi) for i ≥ 0 in dgMod(Bm),

where y1 = x0 and for i ≥ 1

αi = (0, . . . , 0, ai−1,i) ∈
i−1⊕
j=0

HomBm (xj[i− j − 1], xi) ≃ HomdgMod(Bm)(yi, xi) ,

where the splitting holds only on the level of graded k-modules. We denote by
⟨x1, . . . , xm−1, ym⟩ ⊂ dgMod(Bm) the full dg-subcategory spanned by x1, . . . , xm−1
and ym. Note that x1, . . . , xm−1, ym compactly generate D(Bm) so that there exists
an equivalence of ∞-categories

D(⟨x1, . . . , xm−1, ym⟩) ≃ D(Bm) .

A direct computation shows that ⟨x1, . . . , xm−1, ym⟩ is quasi-equivalent to the dg-
category Cm with objects x1, . . . , xm−1, ym, generated by the morphisms

• ai,i+1 : xi → xi+1 in degree 0,

• ai,m : xi → ym in degree m− i− 1 and

• am,i : ym → xi in degree n−m+ i− 1

subject to the relations ai,i+1ai−1,i = 0 for 2 ≤ i ≤ m− 2 and am,iaj,m = 0 for i ̸= j
and with differentials determined on generators by

• d(ai,i+1) = 0 for 1 ≤ i ≤ m− 1 and d(am,1) = 0,

• d(ai,m) = (−1)m−iai+1,mai,i+1 for i ̸= m− 1,

• d(am,i) = ai−1,iam,i−1 for i ̸= 1.
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The morphisms ai,m and am,i are given by the images under the quasi-equivalence
⟨x1, . . . , xm−1, ym⟩ → Cm of

(0, . . . , idxi , . . . , 0) ∈
m−1⊕
j=0

HomBm(xi, xj[m− j − 1]) ≃ HomdgMod(Bm)(xi, ym)

and

(0, . . . , (−1)i(n−1)li, . . . , 0) ∈
m−1⊕
j=0

HomBm(xj[m− j − 1], xi) ≃ HomdgMod(Bm)(ym, xi) ,

(75)
respectively. For example, for m = 4, we can depict the generating morphisms of
Cm as follows.

x2

x1 x3

y4

a2,4

a2,3

a1,4

a1,2

a3,4a4,1

a4,3

a4,2

Using Lemma 5.18, we find that the dg-functor µm : Dm → Cm determined by

• µm(zi) = xi for i ̸= m and µm(zm) = ym,

• µm(bi,j) =
ai,j if j = i+ 1 or i = m or j = m

0 else

is a quasi-equivalence. We thus find equivalences of ∞-categories

D(Dm) D(µm)−−−−→ D(Cm) ≃ D(Bm) ≃ Vmf∗ ,

showing part (1).
We proceed with part (2). By inspecting the construction of the equivalence

D(Bm) ≃ Vmf∗ , one finds that for 1 ≤ i ≤ m − 1 the functor ςm−i+1 is modeled
by the dg-functor k[tn−2] → Bm, determined by mapping tn−2 to li, note for this
also the commutative diagram in Proposition 2.46. The commutative diagram of
dg-categories

k[tn−2]

Dm Cm dgMod(Bm)

ιi tn−2 7→li

whose horizontal morphisms are Morita equivalences hence shows that ςm−i+1 is
modeled by ιi; note that the sign in ιi follows from the sign (−1)m−i of the summand
bm,ibi,m in (72) and the sign (−1)i(n−1) in (75). In the case n = m, the remaining
assertion that ς1 is modeled by ι1 follows from the cyclic symmetry of Dm and the
sequence of adjunctions (28).
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5.3.2 Gluing

Let k be a commutative ring and n ≥ 3. When gluing dg-algebras arising from
graded quivers, it is convenient to instead consider corresponding Morita-equivalent
dg-categories with finitely many objects, see Remark 2.18. For instance, the dg-
category corresponding to the relative Ginzburg algebra of an n-gon is described
in Section 5.3.1, where it is denoted Dn. We denote by DT the dg-category with
finitely many objects arising from the graded quiver Q̃T from Definition 5.4, and
with differentials of the generators given as in the relative Ginzburg algebra GT.

Remark 5.20. The dg-category Dn is quasi-equivalent to the dg-category denoted
Dcfbr
n with

• objects 1, . . . , n,

• free generating morphisms bi,j : i → j for all 1 ≤ i, j ≤ n, i ̸= j, as well as
li, Li : i→ i for all 1 ≤ i ≤ n. The degree of bi,j is given by

deg(bi,j) =
j − i− 1 if j > i ,

j − i+ n− 1 if j < i .

The degrees of Li and li are given by

deg(Li) = n− 1 , deg(li) = n− 2 .

• The differentials are determined on the generators by

d(bi,j) =

∑
i≤k≤j(−1)j−k−1bk,jbi,k if j > i∑
i≤k≤n(−1)j−k+n−1bk,jbi,k +∑

1≤k≤j(−1)j−k−1bk,jbi,k if j < i ,

d(li) = 0 ,
and

d(Li) = −li +
∑
j<i

(−1)n+j−ibj,ibi,j +
∑
i<j

(−1)j−ibj,ibi,j . (76)

The advantage of considering Dcfbr
n is that the dg-functor

k[t2−n]⨿n −→ Dcfbr
n ,

determined by mapping the generator t2−n in the i-th component k[t2−n] to li, defines
a cofibration between cofibrant dg-categories, with respect to the quasi-equivalence
model structure on dgCat. To see this, one may directly verify the left lifting
property with respect to acyclic fibrations.
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Construction 5.21. For each vertex v of T, we choose a total order of its incident
halfedges, compatible with the given cyclic order. We choose for each edge e of T a
halfedge of e. We emphasize that the outcome of this construction does not depend
on these choices up to dg-isomorphism.

We define a functor
DT : Exit(T)op → dgCat

by mapping

• each vertex v of T to the dg-category Dcfbr
n ,

• each edge e of T to the dg-algebra k[tn−2] and

• each incidence α : v i−→ e of a vertex with an edge, given by the i-th halfedge
in the chosen total order, to the dg-functor k[tn−2]→ Dn determined by

tn−2 7→ (−1)sgn(α)ln−i . (77)

Here sgn(α) = n if the halfedge i was chosen in the beginning, and sgn(α) = 0
if it was not. Note that (77) reverses the total order from counterclockwise
(orientation of the ribbon graph), to clockwise (orientation of the quiver un-
derlying Dcfbr

n ).

Lemma 5.22. The 1-categorical colimit of the diagram DT : Exit(T)op → dgCat is
quasi-equivalent to DT and hence Morita-equivalent to the relative Ginzburg algebra
GT.

Proof. The 1-categorical colimit of DT is described by the dg-category arising from a
graded quiver obtained by adding to Q̃Γ at each vertex v an additional loop in degree
n − 2, denoted here lv, whose differential in DT vanishes, as well as an additional
loop in degree n− 1 (whose differential we specify below).

Given a vertex v of Q̃Γ corresponding to an external edge of T, we thus have a
single loop Lv in degree n−1 at v. The differential is as in (76). It is straightforward
to see that discarding the loops Lv, lv does not affect the homology of colimDT.

Similarly, given a vertex v of Q̃Γ corresponding to an internal edge of T, we
have two loops Lv, L′

v in degree n − 1 at v and a single loop lv in degree n − 2
at v. The differential of ±(Lv + (−1)n−1L′

v) is given as in (60) (replacing a’s by
b’s). Note that the sign (−1)n−1 = −(−1)n arises from the sign in (77). We thus
have a well-defined dg-functor DT → colimDT, which maps all generators av,i,j to
the corresponding generators in colimDT, and each loop Lv to ±(Lv + (−1)n−1L′

v).
This dg-functor describes the desired quasi-equvialence.

Proof of Theorem 5.15. We consider FT as a diagram Exit(T)→ PrRSt and let FL
T be

the left adjoint diagram of FT, obtained by composing FT with the equivalence of
∞-categories ladj(-) : PrRSt ≃ (PrLSt)op. We hence have an equivalence of∞-categories

H(T,FT) = limExit(T) FT ≃ colimExit(T)op FLT .
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To prove the Theorem, we may thus proceed with describing colimExit(T)op FLT .
The functor FLT factors by Proposition 5.19, up to equivalence, through the col-

imit preserving functor D(-) : dgCat[W−1]→ PrLSt via the composite of the localiza-
tion functor dgCat → dgCat[W−1] with the functor DT : Exit(T)op → dgCat from
Construction 5.21. By Lemma 5.22, GT is Morita-equivalent to the colimit of DT.

It follows from Remark 5.20 and Lemma 5.23 below that DT defines a cofibrant
object with respect to the projective model strutures on Fun(Exit(T)op, dgCat).
Hence, the colimit of DT coincides with its homotopy colimit. The localization
functor dgCat → dgCat[W−1] turns homotopy colimits into ∞-categorical colimits
and we thus find the desired equivalence of ∞-categories

H(T,FT) ≃ colimExit(T)op D(DT) ≃ D(colimExit(T)op DT) ≃ D(GT) .

Lemma 5.23. Let P be a finite, bipartite poset with partition sets X, Y ⊂ P and
morphisms going from X to Y . Let C be a model category with finite coproducts
and F : P → C a diagram valued in cofibrant objects. Assume further that, for all
y ∈ P , the morphism ∐

α:x→y∈X/y
F (α) :

∐
α:x→y∈X/y

F (x) −→ F (y)

is a cofibration in C, where X/y = X ×P P/y is the relative over-category. Then
F defines a cofibrant object in the category Fun(P,C) with the projective model
structure. In particular, the colimit of F coincides with the homotopy colimit.
Proof. We need to check the right lifting property of F with respect to acyclic
fibrations in Fun(P,C), meaning we need to solve the lifting problem

G

F H

η

ν

µ

where G,H : P → C and η : G → H is a acyclic fibration, meaning that η(p) is an
acyclic fibration in C for all p ∈ P . For each x ∈ X, we can use that F (x) ∈ C is
cofibrant to lift ν(x) along η(x), defining the morphism µ(x) : F (x) → G(x). Let
y ∈ Y and consider the composite morphism in C

ξy :
∐

α:x→y∈X/y
F (x)

∐
α:x→y∈X/y µ(x)

−−−−−−−−−−→
∐

α:x→y∈X/y
G(x)

∐
α:x→y∈X/y G(α)

−−−−−−−−−−−→ G(y) .

Using that ∐α:x→y∈X/y F (α) is a cofibrantion and η(y) a trivial cofibration, we can
solve the lifting problem

∐
α:x→y∈X/y F (x) G(y)

F (y) H(y)

ξy

∐
α:x→y∈X/y F (α) η(y)

ν(y)

µ(y)
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defininig µ(y). Inspecting the construction, it is immediate that these choices of
µ(x) and µ(y) for x ∈ X, y ∈ Y assemble into a natural transformation µ. Further,
by construction, η(x) ◦ µ(x) = ν(x) and η(y) ◦ µ(y) = ν(y) for all x ∈ X, y ∈ Y and
thus also η ◦ µ = ν. This shows that µ is the desired lift, concluding the proof.

Let e ∈ T1 be an edge andR = k a commutative ring. Recall that ev∗
e : H(T,FT)→

FT(e) = RModk[tn−2] denotes be the left adjoint of the evaluation functor eve of co-
Cartesian sections at e.

Proposition 5.24. If R = k is a commutative ring, the projective GT-module peGT,
where pe ∈ kQ̃T is the lazy path at e, is identified under the equivalence (69) with
ev∗

e(k[tn−2]).

Proof. Let v be a vertex incident to e. The functor eve factors through the restriction
functors

H(T,FT)→ H(Tv/,FT|Exit(Tv/))→ F(e) .
The left adjoint thus factors as

F(e)→ H(Tv/,FT|Exit(Tv/))→ H(T,FT) .

The first functor in this factorization is modeled by Proposition 5.19 by a dg-functor
k[tn−2] → Dn ≃ Dcfbr

n . The latter functor in this factorization is modeled by the
proof of Theorem 5.15 by the functor Dcfbr

n → colimDT. Composing with the Morita
equivalenceDT → (GT)perf , the arising dg-functor k[tn−2]→ (GT)perf maps the unique
object of k[tn−2] to peGT. This shows that ev∗

e(k[tn−2]) ≃ peGT.

5.3.3 The relative Calabi–Yau structure

For this section, we fix a field k and an integer n ≥ 3.

Lemma 5.25.

(1) There exists an equivalence

HH(D(k[tn−2])) ≃ k[tn−2]⊕ k[tn−2][n− 1] .

(2) Let φ : k[tn−2]
tn−2 7→(−1)ntn−2−−−−−−−−−−→ k[tn−2]. There exists a commutative diagram

HH(k[tn−2]) k[tn−2]⊕ k[tn−2][n− 1]

HH(k[tn−2]) k[tn−2]⊕ k[tn−2][n− 1]

≃

HH(φ∗) φ⊕φ[n−1]

≃

Proof. Note that k[tn−2]e ≃ k[sn−2, tn−2] is the graded commutative polynomial dg-
algebra in two variables in degree n− 2. A free k[sn−2, tn−2]-resolution of the right
k[sn−2, tn−2]-module k[tn−2] is given by

k[sn−2, tn−2][n− 2] (sn−2+(−1)ntn−2)·(-)−−−−−−−−−−−−→ k[sn−2, tn−2] .
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It follows that

HH(k[tn−2]) ≃ k[tn−2]⊗k[tn−2]e k[tn−2] ≃ k[tn−2]⊕ k[tn−2][n− 1] ,

showing part (1). For part (2), we note that the action of HH(φ) is equivalent to
the apparent action of φ on the tensor product k[tn−2] ⊗k[tn−2]e k[tn−2], as follows
for instance by combining [BD19, Prop. 4.3] and [BD21, Prop. 4.4], implying the
commutativity of the diagram.

Definition 5.26. Let S be a marked surface with an ideal n-angulation T with n
even. We call T orientable if there exist choices of orientations of the edges of T,
such that the directions of the halfedges at any vertex of T alternative in their cyclic
order.

Theorem 5.27. Let S be a marked surface with an ideal n-angulation T. The k-
linear ∞-category D(GT) ≃ H(T,FT) is a smooth. If n is odd, or T is orientable in
the sense of Definition 5.26, then the k-linear functor

∂FT :
∏
e∈T∂1

F(e) −→ H(T,FT)

admits a weak left n-Calabi–Yau structure.

Remark 5.28. If S has empty boundary, then Theorem 5.27 shows that D(GT) is
weakly left n-Calabi–Yau (without the adjective relative). A related result is shown
in [CHQ23, Prop. 7.6], namely that the derived endomorphism algebra of the simple
GT-modules associated with the vertices of the underlying quiver is a version of right
n-Calabi–Yau. The condition of orientability of Definition 5.26 also appears there.

Proof of Theorem 5.27. The smoothness follows from Corollary 4.31. By Theo-
rem 4.36, D(k[tn−2]) ≃ Fun(Sn−1,D(k)) admits a weak left (n − 1)-Calabi–Yau
structure. We can take the corresponding Hochschild class σk[tn−2] : k[n − 1] →
HH(D(k[tn−2]) to be given by 1 ∈ k ≃ Hn−1 HH(D(k[tn−2]). Composition with the
functor HH(φ∗) maps σk[tn−2] by Lemma 5.25 to (−1)nσk[tn−2].

Theorem 4.36 further shows that the functor f! : Fun(Sn−1,D(k)) → D(k) ad-
mits a weak left (n− 1)-Calabi–Yau structure. Since f∗ ≃ f![−n] is modeled by ϕ∗,
it follows that ϕ∗ also admits a weak left (n − 1)-Calabi–Yau structure σ : k[n] →
HH(D(k[tn−2]),D(k)), which restricts to σk[tn−2] : k[n − 1] → HH(D(k[tn−2]). The
functor

D(k[tn−2])×n
∏
ςi−−→ Vnϕ∗

inherits by Proposition 4.38 a weak left n-Calabi–Yau structure which restricts on
the i-th copy of D(k[tn−2]) to (−1)iσk[tn−2]. Inspecting Construction 5.14 and, if n is
odd using that φ∗ acts on σk[tn−2] by reversing the sign, we find that the conditions
of Theorem 4.43 are satisfied for FT, yielding the desired relative weak left n-Calabi–
Yau structure.
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Remark 5.29. In the case n = 3, the relative Ginzburg algebra GT arises from an
ice quiver with potential in the sense of [Wu23b] and is thus an instance of Yeung’s
deformed relative Calabi-Yau completion [Yeu16]. This gives an alternative proof
of Theorem 5.27 in the case n = 3, which additionally shows that D(GT) is relative
left n-Calabi–Yau (without the adjective weak).

5.4 Objects from curves
In Section 5.4.1, we introduce the class of curves forming the base for the geo-
metric model, referred to as matching curves. We proceed in Section 5.4.2 with
the construction of the global sections associated with matching data, consisting
of matching curves together with further data. In Section 5.4.3, we show that the
projective GT-modules associated with the vertices of the underlying quiver can be
realized in terms of global sections associated with matching data with underlying
pure matching curves.

5.4.1 Matching curves

We fix a marked surface S with an n-valent spanning graph T. We also fix a base
E∞-ring spectrum R. For each vertex v of T, we have an immersion Σv → ΣT, see
Remark 3.54. This immersion is an embedding if no edge of T incident to v is a
loop.

Definition 5.30. Let v ∈ T0. A segment at v is an embedded curve δ : [0, 1]→ Σv,
which does not hit v away from the endpoints and which is of one of the following
two types.

(1) One end lies at v, the other on the boundary of Σv.

(2) Both ends lie on the boundary of Σv. In this case, since the segment δ is
embedded, it wraps 1 ≤ a ≤ n steps around the vertex v.

We consider segments at v as equivalence classes under homotopies relative ∂Σv∪{v}.
A segment in ΣT is a segment at any v ∈ T0. We do not distinguish in notation its

representatives from the curves in ΣT obtained from composing with the immersion
Σv → ΣT.

The two types of segments are depicted in Figure 2.
We can always assume that a given end of a segment which does not lie at a

vertex of T0 ends on an edge e of T. This will be useful for specifying at which
boundary component of Σv the segments begins or ends. If the segment is of the
first type and ends at e, we also say that the segment exits the vertex through e.

Definition 5.31. Let δ be a segment in ΣT. If δ is of the first type, we define its
degree as d(δ) = 0. If δ is of the second type, we define its degree as d(δ) = a−1 if δ
goes in the counterclockwise direction and as d(δ) = 1− a if δ goes in the clockwise
direction. We call a segment pure if d(δ) = 0.
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... v
... v

Figure 2: A segment of the first type at v (in blue, on the left) with unspecified
direction and two segments of the second type at v (in blue, on the right), wrapping
around v in the counterclockwise and clockwise direction by a = 1 and a = n − 2
steps, respectively.

For N ∈ N = {1, 2, 3, . . . }, we consider the sets [N ] := {1, . . . , N} and Z/NZ :=
{1, . . . , N +1}/N +1 ∼ 1. The set [N ] is ordered linearly, the set Z/NZ has a cyclic
order.

Definition 5.32. Let I = Z/NZ, [N ],N,Z for N ∈ N. Consider a collection of
segments {δi}i∈I in ΣT satisfying for all i ∈ I and i ̸= N if I = [N ] that

• δi+1(0) = δi(1) in ΣT.

• if the segments δi and δi+1 both lie at the same vertex v of T, then δi(1)
lies on a loop of T and the two points δi(1), δi+1(0) lie on different boundary
components of Σv, (this means that that their composite wraps around the
loop).

Consider the curve γ : U → ΣT arising from composing (representatives of) the
curves {δi}i∈I (in their given order). We further suppose that

• The curve γ does not cut out (by tracing along a connected part of the curve)
any unmarked discs in ΣT.

• If I = Z/NZ, that d(γ) = 0, see Definition 5.33, and that γ is not homotopic
relative ∂ΣT ∪ T0 to the composite of multiple identical closed curves in ΣT.

We call the curve γ : U → ΣT a curve in ΣT composed of segments. Being composed
of segments is a property, the segments can be recovered from γ by intersecting with
the Σv’s.

Reparametrizing γ if necessary, we can assume that U = S1 if I = Z/NZ,
U = [0, 1] if I = [N ], U = [0,∞) if I = N and U = (−∞,∞) if I = Z. If U = S1,
we call γ closed. Otherwise, we call γ open.

Definition 5.33. Let γ be a curve in ΣT composed of segments.
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(1) We call γ regular, if it is only composed of segments of the second type which do
not wrap around the vertices by n steps. We call γ singular, if it is not regular.

(2) Suppose that γ is composed of finitely many segments δ1, . . . , δm. We define the
degree of γ as

d(γ) =
m∑
i=1

d(δi) .

Definition 5.34.

• Let U = S1, [0, 1], [0,∞), (−∞,∞). Consider a curve γ : U → ΣT composed of
segments, see Definition 5.32. The curve γ is called a matching curve in ΣT

if for all x ∈ ∂U , γ(x) lies in T0 or in ∂ΣT. We consider matching curves as
equivalence classes under homotopies relative ∂ΣT ∪ T0.

• A matching curve in S\M is defined to be a homotopy class relative (∂S\M)∪
T0 of curves U → S\M which contains a representative given by the composite
of a matching curve in ΣT with the homotopy equivalence ΣT → S\M of
Remark 3.54.

• A matching curve in ΣT or S\M is called finite if it is composed of finitely
many segments.

• A matching curve in ΣT or S\M is called pure if it is only composed of pure
segments.

Note that matching curves do not intersect T0 nor the boundary of the surface
except at the endpoints.

Remark 5.35. The notion of matching curve in S\M does not depend on the
choice of n-valent spanning graph T. A homotopy class of open curves in S\M
with endpoints in (∂S\M) ∪ T0, but which is away from its endpoints disjoint from
(∂S\M)∪ T0, arises as a matching curve if and only if it has a representative which
cuts out no discs and which is not contractible to a point in (∂S\M)∪T0. For closed
curves, additionally the degree needs to vanish.

Notation 5.36. Let γ be an open curve in S\M composed of segments with index
set I. Let i ∈ I and δi be the corresponding segment of γ. We denote by γ < δi
the curve obtained by the composite of the segments {δj}j∈I,j<i and by γ ≤ δi the
curve obtained by the composite the segments {δj}j∈I,j≤i. We similarly define the
curves δi < γ and δi ≤ γ, and given two segments δi, δi′ of γ, the curves δi < γ < δi′ ,
δi ≤ γ < δi′ , δi < γ ≤ δi′ and δi ≤ γ ≤ δi′ .

Lemma 5.37. Let n = 3. There exists a bijection between

1) pure matching curves in S\M and

144



2) curves in S\M which do not cut out any discs in S\M and whose endpoints
lie in T0 or ∂S\M , considered modulo homotopies relative ∂S\M which fix the
endpoints in T0.

Proof. Let v be a vertex of T. In Σv, each segment of the second type wrapping
around v by two steps is homotopic relative ∂Σv to a segment of the second type
wrapping only a single step around v, which is thus pure. Note that this uses, that
the homotopy is allowed to cross the vertex v. Similarly, each segment of the second
type wrapping around v by 3 steps is homotopic relative ∂Σv to a point.

Given a curve in S\M which cuts out no discs, it arises as a matching curve.
It follows by the above that this curve is homotopy equivalent, relative ∂S\M and
fixing endpoints in T0, to a pure matching curve. We can thus produce from each
curve as in 2) a pure matching curve in S\M . Conversely, any pure matching curve
clearly defines a curve as in 2). These assignments are inverse bijections.

5.4.2 Objects from matching curves

We fix an n-valent spanning graph T of a marked surface S and an E∞-ring spectrum
R.

Definition 5.38. A matching datum (γ, L) in S\M consists of

• a matching curve γ in S\M ,

• an object L ∈ RModR[tn−2] called the local value,

• if γ is singular an object Q ∈ RModR and an equivalence ϕ∗(Q) ≃ L,

• if γ is closed, an integer a ≥ 1 and a monodromy equivalence

µ ∈ MapRModR[tn−2]
(L⊕a, L⊕a) .

We further assume that L satisfies the technical condition explained in Remark 5.39,
which is always fulfilled if R = k is a commutative ring.

We call (γ, L) open if γ is open and closed if γ is closed. We define the rank of
(γ, L) as a if γ is closed and as 1 if γ is open.

Given a segment δ and an object L ∈ RModR[tn−2] (also subject to the conditions
in Remark 5.39), we associate below a section ML

δ of the T-parametrized perverse
schober FT(R) from Construction 5.14. By gluing sections, we then produce for each
matching datum (γ, L) a global section ML

γ of FT(R), see Proposition 5.44.

Remark 5.39. For computational reasons, we always assume that L ∈ RModR[tn−2]
satisfies TRModR[tn−2](L) ≃ L[1 − n], where TRModR[tn−2] is the twist functor of the
spherical adjunction ϕ∗ ⊣ ϕ∗. If R = k is a commutative ring, then this is satisfied
for any L, as follows from [Chr22b, Prop. 5.7]. If R is arbitrary, then L = ϕ∗(R)
and L = R[tn−2] also satisfy the requirement, see part (2) of Proposition 5.12.
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Construction 5.40. Let p : Γ(FT(R)) → Exit(Γ) be the Grothendieck construc-
tion of FT(R) and L the ∞-category of sections of FT(R), i.e. sections of p, see
Definition 3.36.

We consider a vertex v ∈ T0, with cyclically ordered incident halfedges a1, . . . , an,
which are part of the edges e1, . . . , en.

1) For 1 ≤ i ≤ n, we denote by δi the segment of the first type at v ending
at ei ∩ ∂Σv. Consider the paracyclic twist functor TVn

ϕ∗ from Lemma 3.31. Let
L ≃ ϕ∗(Q). We define the section ML

δi of FT(R) as the p-relative left Kan extension
along the inclusion ∆0 v−→ Exit(T) of the functor ∆0 → FT(R)(v) ⊂ L with value

Mδi(v) = T i−nVn
ϕ∗

(Q→ 0→ . . . ) [1− n] ∈ Vnf∗ = FT(R)(v) .

Spelling out the definition, one sees that the section Mδi is concentrated at the
elements v, ei ∈ Exit(T) and takes up to equivalence the values

ML
δi(v) ≃

(
Q

!−→ L
id−→ . . .

id−→ L︸︷︷︸
(n−i+1)-th

→ 0→ · · · → 0
)

[−i+ 1] ∈ Vnϕ∗ = FT(R)(v)

(78)
ML

δi(ei) ≃ L ∈ RModR[tn−2] = FT(R)(ei) (79)

and assigns to the edge v → ei a coCartesian morphism, describing an apparent
equivalence ϱi(Mδi(v)) ≃ L ≃Mδ(ei). The notation ∗−→ and !−→ in (78) and below re-
fer to p-Cartesian and p-coCartesian morphisms, respectively, see also Section 2.1.3.

2) For 1 ≤ i, j ≤ n and i ̸= j, we denote by δi,j the segment at v which
starts at ei ∩ ∂Σv and ends at ej ∩ ∂Σv going in the counterclockwise direction.
For L ∈ RModR[tn−2], we define ML

δi,j as the p-relative left Kan extension along
∆0 v−→ Exit(T) of the functor ∆0 → FT(R)(v) ⊂ L with value

ML
δi,j(v) = T i−1

Vn
ϕ∗

(
0→ · · · → 0→ L︸︷︷︸

(n−j+i+1)-th

id−→ . . .
id−→ L

)
∈ Vnϕ∗ = FT(R)(v) .

Spelling out the definition, one sees that the section ML
δi,j is concentrated at ei, ej

and v. To the edges it assigns

ML
δi,j(el) ≃


L l = i ,

L[j − i− 1] k = j > i ,

L[n+ j − i− 1] k = j < i ,

0 else.

(80)

This uses that TRModR[tn−2](L) ≃ L[1− n], see Remark 5.39.
The value of Mδi,j at v is given as follows. If i < j, we have

Mδi,j(v) ≃
(

0→ · · · → 0→ L︸︷︷︸
(n−j+2)-th

≃−→ . . .
≃−→ L︸︷︷︸

(n−i+1)-th

→ 0→ · · · → 0
)

[−i+ 1] ,
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if j < i < n

Mδi,j(v) ≃
(
ϕ∗(L) !−→ ϕ∗ϕ∗(L) ≃−→ . . .

≃−→ ϕ∗ϕ∗(L)︸ ︷︷ ︸
(n−i+1)-th

cuL−−→ L
≃−→ . . .

≃−→ L︸︷︷︸
(n−j+1)-th

→ 0→ . . .

)
[n− i] ,

where cuL denotes the counit map of the adjunction ϕ∗ ⊣ ϕ∗ at L, and in the case
j < i = n we have

Mδn,j(v) ≃
(
ϕ∗(L) ∗−→ L

≃−→ . . .
≃−→ L︸︷︷︸

(n−j+1)-th

→ 0→ · · · → 0
)
.

3) Let 1 ≤ i ≤ n and L ≃ ϕ∗(Q). Denote by δi,i the segment of the second type
starting and ending at ei∩∂Σv, wrapping around v by n steps in the counterclockwise
direction. We define ML

δi,i as the p-relative left Kan extension along ∆0 v−→ Exit(T)
of the functor ∆0 → FT(R)(v) ⊂ L with value

ML
δi,i(v) ≃

(
ϕ∗(L) !−→ ϕ∗ϕ∗(L) ≃−→ . . .

≃−→ ϕ∗ϕ∗(L)︸ ︷︷ ︸
(n−i+1)-th

→ 0→ · · · → 0
)

[n− i]

if i ̸= n and value

ML
δn,n(v) ≃

(
ϕ∗(L)→ 0→ · · · → 0

)
if i = n. One finds apparent equivalences

Mδi,i(el) ≃
ϕ∗ϕ∗(L)[n− 1] ≃ ϕ∗ϕ!(L) l = i

0 l ̸= i

We have a splitting ϕ∗ϕ!(L) ≃ ϕ∗ϕ!ϕ
∗(Q) ≃ ϕ∗(Q) ⊕ ϕ∗(Q)[n − 1] ≃ L ⊕ L[n − 1]

arising from the following diagram:

ϕ∗(Q) ϕ∗ϕ!ϕ
∗(Q) ϕ∗(Q)

0 ϕ∗(Q)[n− 1] 0
□

uϕ∗(Q) ϕ∗◦cuQ

□

Above u and cu denote the unit and counit of ϕ! ⊣ ϕ∗, respectively.

Remark 5.41. Consider a segment δi,j of the second type with i ̸= j. The sus-
pensions arising in the definition of the ML

δi,j in (80) correspond to the degree of
δi,j. Namely, one finds ML

δi,j(ej) ≃ L[d(δi,j)] if i ̸= j and ML
δi,i(ej) = L⊕ L[d(δi,j)] if

i = j.
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Construction 5.42. Let γ be an open curve composed of segments in S\M . Let
L ∈ RModR[tn−2]. In the following we give the construction of a section ML

γ ∈ L of
FT(R). If L = ϕ∗(R), we will also use the notation Mγ = Mϕ∗(R)

γ . If R = k is a
commutative ring and L = k[t±n−2], we will also write Nγ = M

k[t±n−2]
γ (this will only

be used in Section 6).

Let I be the index set of the segments of γ. We denote (if they exist) the minimal
and maximal elements of I by min(I),max(I). We set I ′ = I\{max(I)}, and if I has
no maximal element, we agree that {max(I)} = ∅. We set I ′′ = I\{min(I),max(I)},
and if I has no minimal element, we again set {min(I),max(I)} = ∅. Recall that
the segments of γ are denoted by δi with i ∈ I (ordered compatibly with their
appearance in γ). We denote the edge of T where δi begins by ei and the edge where
δi ends by ei+1. For later use, we also denote by vi ∈ T0 the vertex at which δi lies.
We define ML

γ as the colimit of a diagram Dγ in the ∞-category L of sections of
FT(R), which is given as follows.

The domain of Dγ is the coequalizer Eγ in the 1-category of simplicial sets of
the diagram ∐

i∈I′′ ∆0 ∐
i∈I′ Λ2

0 × {i}
∐
i∈I′′ ∆{1}×{i}∐

i∈I′′ ∆{2}×{i−1}

where the horn Λ2
0 × {i} ≃ Λ2

0 is the poset with objects (0, i), (1, i), (2, i) and mor-
phisms (0, i) → (1, i), (2, i), i.e. a span. For l = 1, 2 and j ∈ I ′, the morphism
∆{l} × {j} is the inclusion ∆0 → ⨿i∈I′Λ2

0 × {i} determined by mapping 0 ∈ (∆0)0
to (l, j) ∈ Λ2

0 × {j} ⊂ ⨿i∈I′Λ2
0 × {i}. Recall that for each segment δi, we defined an

associated section ML
δi
∈ L in Construction 5.40. We further denote by ZL

ej ∈ L the
section concentrated at ej with value L. The diagram Dγ is determined via the its
restrictions to Λ2

0 × {i} with i ∈ I ′, which is for i ≥ 1 given by

ZL
ei [d(δ1 ≤ γ < δi+1)]

ML
δi

[d(δ1 ≤ γ < δi)] ML
δi+1

[d(δ1 ≤ γ < δi+1)]

βα

and for i ≤ 0 given by

ZL
ei [−d(δi+1 ≤ γ < δ1)]

ML
δi

[−d(δi ≤ γ < δ1)] ML
δi+1

[−d(δi+1 ≤ γ < δ1)]

βα

where α and β are the apparent (pointwise in Exit(T)) inclusions.

Construction 5.43. Let (γ, L) be a closed matching datum in S\M of rank a
with monodromy equivalence µ. Let η be the open curve composed of the segments
δ,1 . . . , δN of γ, where δN and δ1 have not been composed. Let e be the edge of
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T where the curve η starts and ends. We consider the section ML
η from Construc-

tion 5.42. We define ML
γ as the coequalizer in L of

(ZL
e )⊕a (ML

η )⊕aι

ι′◦µ−1
(81)

where ι and ι′ are the morphisms with support at e determined by the inclusions
of L⊕a into ML

η (e)⊕a arising from the two ends of η at e and µ : L⊕a → L⊕a is the
monodromy equivalence. We note that upon changing the basepoint 1 ∈ I = Z/NZ,
i.e. relabeling the elements of I but keeping their cyclic order, the curve γ does not
change. One can show, that the section ML

γ also only changes up to equivalence by
such a relabeling.

The section ML
η is obtained by gluing together local sections defined via Kan

extensions. Making different choices of these Kan extensions further yields a different
section ML

γ , which however only differs by a change in the monodromy equivalence
µ given by composition with an invertible diagonal a × a-matrix with entries in
Mapk[tn−2](L,L). By varying over all µ, we thus always construct the same class
of objects, independent of the choices of Kan extensions. One can remove this
ambiguity by fixing choices of these Kan extensions. Alternatively, in the special
case n = 3 and R = k a field and L = k[t±1 ], the proof of Theorem 6.35 also describes
a way to associate a unique monodromy equivalence with a global section M

k[t±1 ]
γ .

Proposition 5.44. Let (γ, L) be matching datum. The section ML
γ of FT(R) defined

in Construction 5.42 or Construction 5.43 is a global section.

Proof. One needs to show that ML
γ is a coCartesian section. This directly follows

from unraveling the construction of ML
γ and is left to the reader.

Remark 5.45. Given a matching datum (γ, L), there is a canonical matching datum
with underlying matching curve γrev obtained by reversing the orientation of γ. If
γ is an open matching curve, it is easy to see that ML

γrev ≃ Mγ[−d(γ)]. If γ is
a closed matching curve, reversing the orientation of γ in the construction of ML

γ

interchanges the two maps in (81). Hence, to obtain the same global section, we
need to replace the monodromy equivalence in the matching datum by its inverse.

Remark 5.46. It is apparent that Construction 5.40 can be translated to a con-
struction, which associates for an arbitrary perverse schober F with generic stalk
N ∈ St to segments of the second type and choice of object L ∈ N a local section
of F. Additional data is required to associate local sections to segments of the first
type. One can then proceed to glue these local sections to associate global sections
to certain curves, as in the above constructions.

Example 5.47. We illustrate Construction 5.42 and Construction 5.43 in an exam-
ple with R = k and n = 3. Consider the once-punctured 3-gon (in green), with the
puncture called p and the ideal triangulation depicted in black.
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p

v2

v1

e

The perverse schober FT(k) is up to natural equivalence given by the following
diagram,

Nϕ∗

Nϕ∗ V3
ϕ∗ Nϕ∗

Nϕ∗ V3
ϕ∗ Nϕ∗ V3

ϕ∗ Nϕ∗

ϱ1

ϱ2

ϱ3

ϱ2

ϱ3

ϱ1

ϱ1

ϱ3
ϱ2

where V3
ϕ∗ denotes the value of FT(k) at the vertices and Nϕ∗ = RModk[t1] ≃ D(k[t1])

denotes the value of FT(k) at the edges of T. Algebraically, one can describe V3
f∗

as the derived ∞-category of the relative Ginzburg algebra of the 3-gon, which we
denote in the following by G∆. For a depiction of G∆ see Example 5.6.

The singular matching curve γe given by the edge e connecting v1 and v2 gives
rise to the following global section Mγe , which describes a 3-spherical object.

0

ϕ∗(k) s1 0

0 s2 0 0 0

Above, we denote s1 = (k ∗−→ ϕ∗(k) id−→ ϕ∗(k)), s2 = (k ∗−→ ϕ∗(k) → 0) ∈ V3
ϕ∗ .

Algebraically, s1 and s2 describe simple G∆-modules(in the abelian 1-category of
modules), each associated with a vertex of the underlying quiver, and ϕ∗(k) is the
unique k[t1]-module with value k.

Consider any module L ∈ RModk[t1], and a matching datum (γ, L) of rank 1
with γ the closed pure matching curve wrapping around m. The associated global
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section ML
γ is of the form

0

L ι3(L) L

0 ι3(L) L ι3(L) 0

where ι3(L) = (0→ 0→ L) ∈ V3
f∗ is the object concentrated in the third component

of the semiorthogonal decomposition of V3
f∗ with value L. Algebraically, one can

describe ι3(L) as the derived tensor product L ⊗k[t1] peG∆ with the projective G∆-
module associated to some vertex of the quiver underlying G∆.

5.4.3 Projective modules via pure matching curves

We fix a marked surface S with an n-valent spanning graph T and an E∞-ring
spectrum R.

Let e be an edge of T and v1, v2 the vertices incident to e. Consider the curve
composed of segments cie with i = 1, 2 whose first segment lies at vi, which begins
at e and whose segments are all pure of the second type, wrapping exactly one step
in the counterclockwise direction around a vertex of T. We define the curve ce as
the composite of c1

e with the curve obtained by reversing the orientation of c2
e. Note

that ce is a pure, regular matching curve.

Example 5.48. Below, we depict the 4-gon with an ideal triangulation T with edges
e1, . . . , e5 and associated matching curves ce1 , . . . , ce5 .

e1

e2

e3

e4

e5

ce1 ce2

ce3

ce4 ce5

Proposition 5.49. For each L ∈ RModR[tn−2] and edge e ∈ T1, there exists an
equivalence in H(T,FT(R))

ML
ce ≃ ev∗

e(L) (82)
with ev∗

e = ladj(eve) the left adjoint of the evaluation functor eve : H(T,FT(R)) →
FT(R)(e) = RModR[tn−2].
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Thus, by Proposition 3.39, the global section MR[tn−2]
ce is the direct summand

of a compact generator of the ∞-category H(T,FT(R)) associated with the edge e.
Proposition 5.24 further shows that in the case that R = k is a commutative ring,
the global section Mk[tn−2]

ce ≃ peGT describes the projective GT module associated with
the edge e.

Proof. Consider the curve ce as above and let I be the index set of its segments.
The two first segments of the curves c1

e and c2
e, lying at v1, respectively, v2, yield

segments δx and δx+1 of ce with x ∈ I.
Consider the R-linear ∞-categories D = H(T,FT(R)) and L of global sections,

respectively, all sections of FT. Let v ∈ T0 be a vertex with incident edges labeled
e1, . . . , en and let δi,i+1 be the pure segment of the second type lying at v passing
from ei to ei+1. The functor MorL(ML

δi,i+1 , -) : L → RModR is equivalent to the
functor

ẽvLv,i : L
evv−−→ Vnϕ∗

ϱi−→ RModR[tn−2]
Mor(L,-)−−−−−→ RModR ,

as can be seen using that ML
δi,i+1 is a p-relative left Kan extension of its restriction

to v. Similarly, for each edge e of T, we find the functor MorL(ZL
e , -) : L→ RModR

to be equivalent to

ẽvLe : L eve−−→ RModR[tn−2]
Mor(L,-)−−−−−→ RModR .

Note that the composites of ẽvv,i and ẽvei with the inclusion D→ L are equivalent,
we denote this functor by evLei .

Using the definition of ML
ce and that MorL(-, -) preserves limits in the first en-

try, we obtain that MorL(ML
ce , -) : L → RModR is given by the limit of the dia-

gram MorL(Dce , -) : Eop
ce → Fun(L,RModR). Composing with the limit preserving

pullback functor Fun(L,RModR) → Fun(D,RModR) along the inclusion D → L,
one obtains the diagram in Fun(D,RModR), which assigns, up to equivalence, to
Λ2

0 × {x} the constant diagram with value evLe , to (0, j) → (2, j) for j > x and to
(0, j) → (1, j) for j < x the identity on evLej−1 , where ej−1 is the edge where δj−1

ends and δj begins. The limit MorD(ML
ce , -) is thus equivalent to the functor evLe .

Evaluating the left adjoints at R shows the desired equivalence (82).

5.5 Morphisms from intersections
For the entirety of Section 5.5, we fix an E∞-ring spectrum R and a marked surface
S with an n-valent spanning graph T. In this section, we describe the morphism
objects between the global sections of FT(R) arising from matching data with pure
underlying matching curves. We begin by describing the different types of intersec-
tions between matching curves.

Definition 5.50. Let γ, γ′ be two matching curves in S. We choose representatives
of γ and γ′ with the minimal number of intersections.

• We define the number of singular intersections isg(γ, γ′) as the number of
intersections of γ and γ′ at their endpoints in T0. If γ = γ′ with distinct
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endpoints, we define isg(γ, γ) as the number of endpoints of γ in T0. If γ = γ′

with two identical endpoints, we set isg(γ, γ) = 4.

• We define the number of directed boundary intersections ibdry(γ, γ′) as the
number of intersections of γ and γ′ with the same connected component of
∂S\M such that the intersection of γ and ∂S\M precedes the intersection of
γ′ and ∂S\M in the orientation of ∂S\M induced by the clockwise orientation
of S. If γ = γ′, we only count directed boundary intersections of distinct
endpoints.

• We denote by icr(γ, γ′) the number of crossings from γ to γ′, see Definition 5.51.
If γ = γ′, then icr(γ, γ) counts each self-crossing only once.

Definition 5.51. Consider an intersection of two matching curves γ, γ′ in S\M away
from their endpoints. This intersection can be chosen to lie in a small neighborhood
of an edge e of T. We say that the intersection is a crossing from γ to γ′ if in this
neighborhood, the curves are arranged as follows.

γ

γ′
e

The orange arrow goes in the counterclockwise direction. If the curves are arranged
in the opposite way, we say that the intersection is a crossing from γ′ to γ.
Notation 5.52.

• Consider a singular intersection of γ and γ′ at a vertex v, with segments
δ = δi and δ′ = δj at v and 1 ≤ i, j ≤ n in the notation of part 1) of
Construction 5.40. We denote by deg = i − j, if i < j, and deg = i − j − n,
if j < i, the number of steps after which the segment δ′ follows the segment
δ at v in the counterclockwise direction. If i = j, then both δ and δ′ exit
Σv through the same boundary component f ⊂ ∂Σv. Choosing γ, γ′ with the
minimal number of intersections, we set deg = 0 if the intersection of δ with
f precedes the intersection of δ′ with f ; otherwise we set deg = −n.

• Given L,L′ ∈ RModR[tn−2], we denote by Mor(L,L′) = MorRModR[tn−2](L,L′)
the morphism object.

• Given Q,Q′ ∈ RModR, we denote by MorR(Q,Q′) = MorRModR(Q,Q′) the
morphism object.

Theorem 5.53. Let (γ, L), (γ′, L′) be two matching data in S\M , such that γ ̸= γ′,
γ, γ′ are pure and have no common infinite ends, see Remark 5.57. Let a be the
rank of (γ, L) and a′ the rank of (γ′, L′). Consider the associated global sections
ML

γ ,M
L′
γ′ ∈ D := H(T,FT(R)).

The morphism object MorD(ML
γ ,M

L′
γ′ ) ∈ RModR is equivalent to

Mor(L,L′)⊕ibdry(γ,γ′))+aa′(icr(γ,γ′)⊕Mor(L,L′)[−1]⊕aa′icr(γ′,γ)⊕
⊕

isg(γ,γ′)
MorR(Q,Q′)[deg] .
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Theorem 5.54. Let (γ, L) and (γ, L′) be two matching data in S\M , whose under-
lying matching curves are identical. Suppose that γ is pure.

i) Suppose that γ is open and regular. The morphism object MorD(ML
γ ,M

L′
γ ) ∈

RModR is equivalent to

Mor(L,L′)⊕1+icr(γ,γ)+ibdry(γ,γ) ⊕Mor(L,L′)[−1]⊕icr(γ,γ)

ii) Suppose that γ is open and singular. The morphism object MorD(ML
γ ,M

L′
γ ) ∈

RModR is equivalent to

(Mor(L,L′)⊕Mor(L,L′)[−1])⊕icr(γ,γ) ⊕
⊕

isg(γ,γ)
MorR(Q,Q′)[deg] .

iii) Let R = k be a field and assume that γ is a closed matching curve (thus automat-
ically regular) and that Map(L,L) ≃ k. Assume further that the monodromy
equivalence of (γ, L) is given by a single a × a-Jordan block. The morphism
object MorD(ML

γ ,M
L
γ ) ∈ RModR is equivalent to

(Mor(L,L)⊕Mor(L,L)[−1])⊕a+a2icr(γ,γ) .

Example 5.55. Let (γ, ϕ∗(R)) be a matching datum in S\M , such that γ is finite,
pure and has no self-intersections.

1. If both ends of γ lie at vertices of T0, then

MorD(Mγ,Mγ) ≃ R⊕R[−n] ,

meaning that Mγ is an n-spherical object.

2. If γ begins at a vertex of T and ends on the boundary of S, then Mγ is an
exceptional object, i.e. MorD(Mγ,Mγ) ≃ R.

3. If γ begins and ends on the boundary of S, then

MorD(Mγ,Mγ) ≃ R⊕R[1− n] ,

meaning that Mγ is an (n− 1)-spherical object.

4. If (γ, ϕ∗(R)) is closed and of rank 1 and R = k a field, then

MorD(Mγ,Mγ) ≃ k ⊕ k[−1]⊕ k[1− n]⊕ k[−n] .

Remark 5.56. Let (γ, L) and (γ′, L′) be two matching data, such that γ and γ′

are not necessarily pure. The method of proof of Theorem 5.53 also applies to
compute the morphism object MorD(ML

γ ,M
L′
γ′ ). In this more general setting, there

are however exceptions to the simple rule that MorD(ML
γ ,M

L′
γ′ ) counts intersections,
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unless L,L′ ∈ Im(ϕ∗). We discuss this in Section 5.5.1 and Example 5.61. In the
cases that there are segments of the second type wrapping around a vertex by n
steps, the proofs of Theorems 5.53 and 5.54 do not directly apply and would need
some minor adaptions. Giving a systematic description of the morphism objects in
the non-pure setting would also require introducing gradings of the matching curves
and the surface, as for example done in [IQZ20]. For the applications we have in
mind, the pure matching curves are the most important ones.

Remark 5.57. Consider two distinct matching curves γ : U → Σ and γ′ : U ′ → Σ.
We say that γ and γ′ have a common infinite end if there exist immersions I1 : R≥0 →
U , I2 : R≥0 → U ′ such that the curves γ|I1 and γ|I2 are composed of infinitely many
identical segments. Note that this definition allows that one of the two curves γ or
γ′ is closed. If in Theorem 5.53, γ and γ′ are open with a common infinite end, then
the R-module MorD(ML

γ ,M
L′
γ′ ) consists of infinitely many copies of Mor(L,L′).

The proofs of Theorems 5.53 and 5.54 consist of gluing arguments. We decom-
pose γ and γ′ into segments and begin in Section 5.5.1 by describing all morphisms
between the associated local sections. In Section 5.5.1, we also allow non-pure
segments. In Section 5.5.2, we then describe MorD(ML

γ ,M
L′
γ′ ) via the colimit of a

diagram of morphism objects between the local sections associated to the segments.
In Section 5.5.3 we combine the findings of Section 5.5.1 and Section 5.5.2 to prove
Theorems 5.53 and 5.54.

5.5.1 Intersections locally

In this section, we exclude all segments of the second type wrapping around a vertex
by n steps and all curves composed of segments in which such a segment appear.

Let L denote the R-linear ∞-category of (all) sections of FT(R), see Defini-
tion 3.36. In the following, we describe the morphism objects MorL(ML

δ ,M
L′
η ) and

MorL(ZL
e ,M

L′
η ) where L,L′ ∈ RModR[tn−2], δ is a segment in ΣT, e is an edge of T

and η is any matching curve in S\M or an open curve composed of segments, see
also Construction 5.42 for the notation. If δ (or η) is singular, we require as always
that L ≃ ϕ∗(Q) (or L′ ≃ ϕ∗(Q′)).

We begin by determining the morphism objects between sections ML
δ and ML′

δ′

associated to segments δ, δ′.
If the segments δ and δ′ are not located at the same vertex of T, one finds

MorL(ML
δ ,M

L′
δ′ ) ≃ 0, see also Lemma 5.58. We thus assume that δ, δ′ are located

at the same vertex v ∈ T0. We choose representatives of δ and δ′ with the minimal
number of intersections. With the exception of some cases described further below,
we find that MorL(ML

δ ,M
L′
δ′ ) is the direct sum of R-modules given as follows.

• Each directed boundary intersection from δ to δ′ in Σv contributes a copy of
Mor(L,L′), up to suspensions, to MorL(ML

δ ,M
L′
δ′ ). The corresponding mor-

phisms have support at v, ei, where ei is the edge of T intersecting the same
component of ∂Σv as δ, δ′. If δ, δ′ are pure, no suspensions appear.
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• If L ≃ ϕ∗(Q) and L′ ≃ ϕ∗(Q′), then each singular intersection of δ = δi and
δ′ = δj contributes a single copy of MorR(Q,Q′)[b] to MorL(ML

δ ,M
L′
δ′ ), where

b = i − j if j > i, b = i − j − n if j < i, and b = 0 for i = j. The support of
the corresponding morphisms is given by v if δ ̸= δ′ and by v, ei if δ = δ′ = δi.

• Each crossing of δ and δ′ contributes a copy of Mor(L,L′), up to suspensions,
to MorL(ML

δ ,M
L′
δ′ ), corresponding to morphisms with support at v. There are

no crossings if both δ and δ′ are pure.

• If δ = δ′ = δi,j is of the second type with i ̸= j, then MorL(ML
δ ,M

L
δ′ ) ≃

Mor(L,L′).

There are three possible exceptions to the above description, which appear if L
and L′ do not lie in the image of ϕ∗ and at least one of the segments δ, δ′ is not pure.
In these exceptional cases, we have that δ and δ′ are of the second type, δ ̸= δ′ and
the two segments have either two crossings, two boundary intersections or a crossing
and a boundary intersection. Further below, we describe the outcome in these cases
in more detail.

The above descriptions of MorL(ML
δ ,M

L′
δ′ ) follow from the universal properties

of the involved Kan extensions and some basic computations, as we now explain.
We denote the Grothendieck construction of FT(R) by p : Γ(FT(R)) → Exit(T).
The sections ML

δ and ML′
δ′ were defined as the p-relative left Kan extensions of their

restrictions to {v} ⊂ Exit(T). Using the universal property of Kan extensions and
arguing as in the proof of Lemma 5.58 below, we find that the restriction functor
induces an equivalence of R-modules

MorL(ML
δ ,M

L′

δ′ ) ≃ MorVn
ϕ∗ (ML

δ (v),ML′

δ′ (v)) ,

MorL(ML
δ′ ,ML′

δ ) ≃ MorVn
ϕ∗ (ML

δ′ (v),ML′

δ (v)) .

The resulting morphism objects in Vnϕ∗ can be directly determined by a case by
case analysis, using again universal properties of Kan extensions and making use
of the paracyclic twist TVn

ϕ∗ from Lemma 3.31. We collect the resulting morphisms
objects for all possible pairs δ, δ′ in Tables 1 to 3. For the description of δ, δ′, we
use the notation of Construction 5.40. In Table 1, we consider the cases δ = δ1 and
δ′ = δi with 1 ≤ i ≤ n and L ≃ ϕ∗(Q), L′ ≃ ϕ∗(Q′). In Table 2, we consider the
cases δ = δi and δ′ = δj,n with 1 ≤ i, j ≤ n and j ̸= n and L ≃ ϕ∗(Q). In Table 3,
we consider (a subset of) the cases δ = δ1,j and δ′ = δi

′,j′ with 1 ≤ i′, j, j′ ≤ n and
1 ̸= j, i′ ̸= j′. Any unordered pair δ, δ′ is described by one of the pairs considered
below, up to the rational symmetry of Σv, on the categorical level realized by the
action of the paracyclic twist functor TVn

ψ∗ on FT(R)(v).
In Table 3, the three cases where the simple description of the morphisms objects

in terms of intersections can fail are separated from the other cases. In the case of
δ ̸= δ′ with two boundary intersections, the morphism objects match the number of
intersections, but the support of the morphisms does not behave as expected (unless
L,L′ ∈ Im(ϕ∗)). See also Example 5.61 for the consequences of this phenomenon. To
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Intersections δ1, δi MorL(ML
δ1 ,ML′

δi ) MorL(ML′

δi ,M
L
δ1) Support

1x singular i > 1 MorR(Q,Q′)[1− i] MorR(Q′, Q)[i− 1− n] at v
1x singular i = 1 MorR(Q,Q′) MorR(Q′, Q) at v, e1

Table 1: All possible pairs of two segments δ1, δi of the first type up to rotational
symmetry.

Intersections δi, δj,n MorL(ML
δi ,M

L′

δj,n) MorL(ML′

δj,n ,M
L
δi) Support

none i < j < n 0 0 /
1x crossing j < i < n Mor(L,L′)[i− j − 1] Mor(L′, L)[j − i] at v

1x boundary j = i < n 0 Mor(L′, L)[j − i] at v, ei
1x boundary j < i = n Mor(L,L′)[n− j − 1] 0 at v, en

Table 2: All possible pairs of one segment δi of the first type and one segments δj,n
of the second type up to rotational symmetry.

Intersections δ1,j , δi′,j′ MorL(ML
δ1,i , ML′

δi′,j′ ) MorL(ML′

δi′,j′ , ML
δ1,i) Support

none 1 < j < i′ < j′ 0 0 /
none 1 < i′ < j′ < j 0 0 /

1x crossing 1 < i′ < j < j′ Mor(L, L′)[1− i′] Mor(L′, L)[i′ − 2] at v
1x boundary 1 < i′ < j = j′ Mor(L, L′)[1− i′] 0 at v, ej

1x boundary 1 < i′ = j < j′ 0 Mor(L′, L)[i′ − 2] at v, ej

1x boundary 1 = i′ < j < j′ Mor(L, L′) 0 at v, e1
2x boundary 1 = i′ < j = j′ Mor(L, L′) Mor(L′, L) at v, e1, ej

2x crossing 1 < j′ < i′ < j Mor(L, ϕ∗ϕ∗(L′))[n−i′] Mor(L′, ϕ∗ϕ∗(L))[i′−2] at v
2x boundary 1 = j′ < j = i′ Mor(L, L′)[n− i′] Mor(L′, L)[i′ − 2] at v, e1, ej

1x crossing +
1x boundary

1 < j′ < j = i′ Mor(L, L′)[n− i′] Mor(L′, ϕ∗ϕ∗(L))[i′−2] at v, ej

Table 3: All possible pairs of two segments δ1,j and δi
′,j′ of the second type up to a

swap and rotational symmetry.
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summarize our computations, the exceptions to the simple rule "#intersections=dim
of Homs" arise if δ and δ′ cut out a vertex of T0.

Lemma 5.58. Let η be a curve in S\M composed of segments {δi}i∈I . Given a
subset Ĩ ⊂ I, we denote Ĩ≥1 = Ĩ ∩ N if I ̸= Z/NZ and Ĩ≥1 = Ĩ if I = Z/NZ. We
denote Ĩ≤0 = Ĩ\Ĩ≥1.

(1) Let δ be a segment lying at a vertex v ∈ T0 and let Iv ⊂ I be the set of segments
of η lying at v. Then there exists an equivalence of R-modules

MorL(ML
δ ,M

L′

η ) ≃
⊕

δ′∈I≥1
v

MorL(ML
δ ,M

L′

δ′ [d(δ1 ≤ η < δ′)])⊕

⊕
δ′∈I≤0

v

MorL(ML
δ ,M

L′

δ′ [d(δ′ ≤ η < δ1)]) .

(2) Let e be an edge of T. Then there exists an equivalence of R-modules

MorL(ZL
e ,M

L′

η ) ≃ Mor(L,ML′

η (e)) .

Denote

N =
⊕

δ′∈I≥1
e

Mor(L,L′)[d(δ1 ≤ η < δ′)]⊕
⊕

δ′∈I≤0
e

Mor(L,L′)[d(δ′ ≤ η < δ1)] ,

where Ie ⊂ I is the set of segments of η which begin at e.
If η does not end at e, there exists an equivalence of R-modules

MorL(ZL
e ,M

L′

η ) ≃ N (83)

If η ends at e, then there exists an equivalence of R-modules

MorL(ZL
e ,M

L′

η ) ≃ N ⊕Mor(L,L′)[d(δ1 ≤ η)] . (84)

Proof. Note that ML
δ and ZL

e are left Kan extensions relative the Grothendieck
construction of FT(R) of their restrictions to v, respectively, e. Using the universal
property of Kan extensions, see [Lur09, 4.3.2.17], it follows that for any section
X ∈ L the restriction morphisms of R-modules

MorL(ML
δ , X) −→ MorVn

ϕ∗ (ML
δ (v), X(v))

MorL(ZL
e , X) −→ Mor(L,X(e))

restrict to equivalences on all homotopy groups so that they are equivalences of
R-modules.

By construction of ML′
η , we find an equivalence in Vnϕ∗

ML′

η (v) ≃
⊕

δ′∈I≥1
v

ML′

δ′ (v)[d(δ1 ≤ η < δ′)]⊕
⊕

δ′∈I≤0
v

ML′

δ′ (v)[d(δ′ ≤ η < δ1)]

158



showing statement (1). Similarly, there exists an equivalence in RModR[tn−2]

ML′

η (e) ≃
⊕

δ′∈I≥1
e

L′[d(δ1 ≤ η < δ′)]⊕
⊕

δ′∈I≤0
e

L′[d(δ′ ≤ η < δ1)]

if η does not end at e and

ML′

η (e) ≃
⊕

δ′∈I≥1
e

L′[d(δ1 ≤ η < δ′)]⊕
⊕

δ′∈I≤0
e

L′[d(δ′ ≤ η < δ1)]⊕ L′[d(δ1 ≤ η)]

if η ends at e, see also Remark 5.41 for the shifts. This shows statement (2).

Remark 5.59. The support of the morphisms objects in Tables 1 to 3 refers to
the support of the corresponding morphisms between sections in the sense of Defi-
nition 2.8. It has the following further interpretation: let δ, δ′ be two segment in S
both lying at a vertex v ∈ T0. Suppose that δ starts at an edge e and ends at an edge
f . Let Mor(L,L′)[l], with l ∈ Z, be a summand of MorL(ML

δ ,M
L′
δ′ ) identified in Ta-

bles 1 to 3, corresponding to morphisms with support at v and the edges J ⊂ {e, f}
(J = ∅ is possible). The composite c of the inclusion morphism of R-modules

Mor(L,L′)[l] −→ MorL(ML
δ ,M

L′

δ′ )

with the morphism

MorL(ML
δ ,M

L′

δ′ ) −→ MorL(ZL
e ,M

L′

δ′ )

obtained from precomposing with the pointwise inclusion of the section ZL
e into ML

δ

can be described as follows.

• If e /∈ J , then c is zero.

• If e ∈ J , then c is the inclusion of a direct summand under the equivalence
(83) or (84).

An analogous description holds for the morphism c arising by replacing the edge e
with f .

The three cases at the end of Table 3 are exceptions to the above descriptions
(unless L,L′ ∈ Im(ϕ∗)).

5.5.2 Intersections globally

We fix two matching data (γ, L) and (γ′, L′) in S\M , such that γ, γ′ are composed
of pure segments. We also assume that γ, γ′ do not have a common infinite end.
We choose representatives of γ and γ′ with the minimal number of intersections.
We also assume in this section that γ is open (and in particular has rank 1). To
ease notation, we further assume that the rank a′ of γ′ is also 1, the general case is
entirely analogous.
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The segments of γ are denoted {δi}i∈I and the segments of γ′ are denoted
{δ′

j}j∈I′ . Recall that ML
γ is defined in Construction 5.42 as the colimit of the diagram

Dγ : Eγ → L. Using that the functor

MorL(-,ML′

γ′ ) : Lop −→ RModR

preserves limits, it follows that MorL(ML
γ ,M

L′
γ′ ) is the limit of the diagram

MorL(-,ML′

γ′ ) ◦Dop
γ : Eop

γ −→ RModR . (85)

In the following we fully describe the diagram (85). We will see that the diagram
(85) is equivalent to the direct sum in the stable∞-category Fun(Eop

γ ,RModR) of a
collection of very manageable diagrams. A subset of these diagrams correspond to
the intersections of γ and γ′ which we will show in the case that γ, γ′ are matching
curves to be the only summands with nonzero limits in RModR.

We proceed with the constructions of the summands of (85) associated to the
different types of intersections.

Singular intersections
For this case, we assume that γ ̸= γ′. Assume that the endpoints of γ, γ′ intersect
in a vertex v ∈ T0. Note that in this case γ and γ′ are singular and thus L ≃
ϕ∗(Q), L′ ≃ ϕ∗(Q′). Since γ and γ′ are pure, reversing their orientations does not
change ML

γ or ML
γ′ . We may thus assume that γ and γ′ both start at v.

Using the rotational symmetry at v, we may assume that the first segment δ1
is given by the segment δ1 of the first type at v. We distinguish two cases. Either
the first segment δ′

1 = δi of γ′ is identical to δ1, i.e. i = 1, or it is not. We begin
with the case i ̸= 1. By Table 1, we have MorL(ML

δ1 ,ML′

δi ) ≃ MorR(Q,Q′)[1− i] and
the corresponding morphisms have support at v. Using Remark 5.59, it follows that
there is a direct summand of the diagram (85) which restricts at (Λ2

0×{1})op to the
diagram

MorR(Q,Q′)[1− i] 0

0

and vanishes on (Λ2
0 × {i})op for 1 < i ∈ I ′. Passing to limits, we get a direct

summand MorR(Q,Q′)[1− i] of MorL(ML
γ ,M

L′
γ′ ).

We now consider the case i = 1. In that case, the matching curves γ and γ′ are
composed of m identical segments δ1 = δ′

1, . . . , δm = δ′
m, starting at v, such that

δm+1 ̸= δ′
m+1 (this uses that γ ̸= γ′). Let v′ ∈ T0 be the vertex where δm+1, δ

′
m+1 lie.

We choose δm+1, δ
′
m+1 such that they have a minimal number of intersections.

We distinguish the following two cases.

1) δm+1(0) ∈ ∂Σv′ precedes δ′
m+1(0) ∈ ∂Σv′ in the clockwise orientation of ∂Σv′ .

2) δm+1(0) ∈ ∂Σv′ follows δ′
m+1(0) ∈ ∂Σv′ in the clockwise orientation of ∂Σv′
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We find in either case for 2 ≤ i ≤ m

MorL(ML
δ1 ,M

L′

δ′
1
) ≃ MorR(Q,Q′)

MorL(ML
δi
,ML′

δ′
i
) ≃ Mor(L,L′)

In case 1), we find
MorL(ML

δm+1 ,M
L′

δ′
m+1

) ≃ Mor(L,L′) ,

whereas in case 2), we find

MorL(Mδm+1 ,Mδ′
m+1

) ≃ 0 ,

see Section 5.5.1. By part (1) of Lemma 5.58, each of the above R-modules also
gives rise to a direct summand of the morphism object MorL(ML

δ ,M
L′
γ′ ). In the case

1), using again Remark 5.59, we thus find a summand of (85) which restricts on
(Λ2

0 × {1})op to the diagram

MorR(Q,Q′) Mor(L,L′)

Mor(L,L′)
≃ (86)

on (Λ2
0 × {i})op for 2 ≤ i ≤ m to the constant diagram with value Mor(L,L′)

and vanishes on the remaining parts of Eop
γ . The limit of this summand gives us

a direct summand MorR(Q,Q′) ⊂ MorL(Mγ,Mγ′), as desired. In the case 2), we
analogously find a summand of (85) which restricts on (Λ2

0 × {1})op to the diagram
(86), on (Λ2

0 × {i})op for 2 ≤ i < m to the constant diagram with value Mor(L,L′),
on (Λ2

0 × {m})op to the diagram

Mor(L,L′) 0

Mor(L,L′)
≃ ≃

and vanishes on the remaining parts of Eop
γ . Using the equivalences Mor(L,L′) ≃

MorR(Q, ϕ∗ϕ
∗(Q′)) and ϕ∗ϕ

∗(Q′) ≃ Q′ ⊕ Q′[1 − n], one finds the limit to be given
by the direct summand MorR(Q,Q′)[−n] ⊂ MorD(Mγ′ ,Mγ).

Crossings
Assume that γ and γ′ have a crossing and consider the segments δ and δ′ of γ

and γ′, respectively, describing the curves at the crossing. The segments δ and δ′

are located at a vertex v ∈ T0. Since pure segments cannot have crossings between
themselves, the crossing between γ and γ′ does not arise as a crossing between
segments in Σv.

Before and after the crossing, the two curves are composed of m ≥ 0 identical
segments. If m were infinite, we could find different representatives for γ, γ′ with
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one intersection less which would contradict our assumptions. We can thus assume
m to be finite.

We can choose representatives of γ and γ′ such that the crossing lies on an edge
connecting two vertices v, v′ ∈ T0. We assume that γ and γ′ are oriented such
that locally around the crossing, they both first pass through Σv and then Σv′ . We
consider all segments δx+i and δ′

y+i with x ∈ I, y ∈ I ′ and 0 ≤ i ≤ m+ 1 for which
there exist representatives of γ and γ′, such that the induced representatives of the
segments δx+i and δ′

y+i share the crossing in question. Note also that by assumption
δx+i = δy+i for 1 ≤ i ≤ m.

The segments δx and δ′
y both lie at a vertex v1 ∈ T0 and the segments δx+m+1

and δ′
y+m+1 also both lie at a vertex v2 ∈ T0. We distinguish the following two cases.

1) The point δ′
y(1) ∈ ∂Σv1 follows the point δx(1) ∈ ∂Σv1 in the clockwise direction

on the intersected boundary component of ∂Σv1 and the point δ′
y+m+1(0) ∈ ∂Σv2

follows the point δx+m+1(0) ∈ ∂Σv2 in the clockwise direction on the intersected
boundary component of ∂Σv2 . This means that the crossing goes from γ to γ′

2) The point δ′
y(1) ∈ ∂Σv1 precedes the point δx(1) ∈ ∂Σv1 in the clockwise direction

on the intersected boundary component of ∂Σv1 and the point δ′
y+m+1(0) ∈ ∂Σv2

precedes the point δx+m+1(0) ∈ ∂Σv2 in the clockwise direction on the intersected
boundary component of ∂Σv2 . This means that the crossing goes form γ′ to γ.

It follows from Section 5.5.1 that there exist direct summands

Mor(L,L′) ⊂ MorL(ML
δx+i

,ML′

δ′
y+i

)

for 0 ≤ i ≤ m+ 1 in the case 1) and 1 ≤ i ≤ m in the case 2).
In the case 1), we thus find a direct summand of the diagram (85) which restricts

on (Λ2
0 × {x + i})op for 0 ≤ i ≤ m up to equivalence to the constant diagram with

value Mor(L,L′) and vanishes on the remaining parts of Eop
γ . Passing to limits,

we obtain the desired summand Mor(L,L′) ⊂ MorL(ML
γ ,M

L′
γ′ ). In the case 2), we

similarly find a direct summand of the diagram (85) which restricts on (Λ2
0×{x})op

to the diagram
0 Mor(L,L′)

Mor(L,L′)
≃

on (Λ2
0×{x+ i})op for 1 ≤ i ≤ m−1 to the constant diagram with value Mor(L,L′),

on (Λ2
0 × {x+m})op to the diagram

Mor(L,L′) 0

Mor(L,L′)
≃

and vanishes on the remaining parts of Eop
γ . Passing to limits, we find the direct

summand Mor(L,L′)[−1] ⊂ MorL(ML
γ ,M

L′
γ′ ).
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Boundary intersections
We assume that γ and γ′ both intersect a boundary component B of S\M and

distinguish two cases.

1) The intersection of γ′ and B follows the intersection of γ and B in the orientation
of B induced by the clockwise orientation of S.

2) The intersection of γ′ and B precedes the intersection of γ and B in the orienta-
tion of B induced by the clockwise orientation of S.

We can assume that both γ and γ′ start at B and have m identical segments
δ1 = δ′

1, . . . , δm = δ′
m, and the segments δm+1 ̸= δ′

m+1 both lie at a vertex v ∈ T0.
In the case 1), we find that δ′

m+1(0) ∈ ∂Σv follows δm+1(0) ∈ ∂Σv on a boundary
component of ∂Σv in the clockwise direction. In the case 2), we find that δ′

m+1(0) ∈
∂Σv precedes δm+1(0) ∈ ∂Σv in the clockwise orientation of ∂Σv.

We thus find direct summands

Mor(L,L′) ⊂ MorL(ML
δi
,ML′

δ′
i
) , (87)

with 1 ≤ i ≤ m+ 1 in the case 1) and 1 ≤ i ≤ m in the case 2).
In the case 1), the summands (87) assemble using Lemma 5.58 and Remark 5.59

into a direct summand of (85) which has constant value Mor(L,L′) on (Λ2
0 × {i})op

for 1 ≤ i ≤ m and vanishes on the remainder of Eop
γ . Passing to limits, we obtain

the desired summand Mor(L,L′) ⊂ MorL(ML
γ ,M

L′
γ′ ). In the case 2), the summands

(87) assemble using Lemma 5.58 into a direct summand of (85) which has constant
value Mor(L,L′) on (Λ2

0 × {i})op for 1 ≤ i ≤ m− 1, takes the value

Mor(L,L′) 0

Mor(L,L′)
≃

on (Λ2
0 × {m})op and vanishes on the remainder of Eop

γ . The limit of this summand
vanishes.

Remark 5.60. Let η be a curve composed of segments, which is not necessarily a
matching curve. The above arguments generalize to describe direct summands of
MorL(ML

η ,M
L′
γ′ ) associated to singular intersections, crossings and directed bound-

ary intersections (defined as for matching curves) of η and γ′.
In the case that η begins or ends at an internal edge e, and γ′ has a segment δ′

which begins or ends at e, we have the following further direct summands. Reori-
enting η if necessary, we may assume that η starts at e. We denote by δ the first
segment of η and by v ∈ T0 the vertex at which η is located. We assume that δ′ also
lies at v and, reorienting γ′ if necessary, that δ′ also begins at e. We choose δ′ in such
a way that it has the minimal number of intersections with δ. This arrangement
roughly looks as follows (for n = 3).
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γ′

δ

δ′

η

e v

If δ′(0) ∈ ∂Σv follows δ(0) ∈ ∂Σv in the clockwise direction in the boundary com-
ponent of ∂Σv, we find MorL(ML

δ ,M
L′
δ′ ) ≃ Mor(L,L′), if not then MorL(ML

δ ,M
L′
δ′ ) ≃

0. Assuming that we are in the former case, the above construction for directed
boundary intersections generalizes to this situation and provides us with a direct
summand Mor(L,L′) ⊂ MorL(ML

η ,M
L′
γ′ ).

Non-intersections
A relevant non-intersection appears every time both curves γ, γ′ pass through

Σv ⊂ ΣT for v ∈ T0, so that the corresponding sections δ, δ′ at v satisfy that
MorL(ML

δ ,M
L′
δ′ ) ̸= 0 or MorL(ML′

δ′ ,ML
δ ) ̸= 0, even though δ and δ′ do not have a

singular intersection and are neither part of a crossing or a boundary intersection.
Since δ and δ′ do not have a crossing, we find by the computations of Section 5.5.1

that there must exist a boundary component B of Σv which intersects both γ and
γ′. We choose to orient γ and γ′ so that both δ and δ′ start at B. Before and after
δ and δ′, the curves γ and γ′ are composed of m identical segments. If m is infinite,
γ and γ′ have a common infinite end. We may thus assume that m is finite. We
find x ∈ I and y ∈ I ′, such that the m common segments of γ and γ′ are δx+i = δ′

y+i
with 1 ≤ i ≤ m. We assume without loss of generality that x, y ≥ 1. The segments
δx and δ′

y both lie at a vertex v1 ∈ T0 and the segments δx+m+1 and δ′
y+m+1 both

lie at a vertex v2 ∈ T0. The discussion now resembles the discussion in the case of
a crossing above. However in contrast to the situation there, we find the following
two possibilities.

1) The point δ′
y(1) ∈ ∂Σv1 follows the point δx(1) ∈ ∂Σv1 in the clockwise direction

on the intersected boundary component of ∂Σv1 and the point δ′
y+m+1(0) ∈ ∂Σv2

precedes the point δx+m+1(0) ∈ ∂Σv2 in the clockwise direction on the intersected
boundary component of ∂Σv2 .

2) The point δx(1) ∈ ∂Σv1 precedes the point δ′
y(1) ∈ ∂Σv1 in the clockwise direction

on the intersected boundary component of ∂Σv1 and the point δx+m+1(0) ∈ ∂Σv2

follows the point δ′
y+m+1(0) ∈ ∂Σv2 in the clockwise direction on the intersected

boundary component of ∂Σv2 .

We continue with the case 1), the case 2) is analogous. The direct summand of
(85) corresponding to the non-intersection is given by the diagram which restricts
on each Λ2

0 × {x+ i} for 0 ≤ i ≤ m to the diagram

Mor(L,L′) Mor(L,L′)

Mor(L,L′)

≃
≃
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restricts on Λ2
0 × {x+m+ 1} to the following diagram

Mor(L,L′) 0

Mor(L,L′)

≃

and vanishes on the remainder of Eop
γ . The limit of this summand thus vanishes, as

desired.

5.5.3 The proofs of Theorems 5.53 and 5.54

Proof of Theorem 5.53. We distinguish the following two cases.

Case 1: γ is open.
In Section 5.5.2 we have associated to each intersection (or relevant non-intersection)
of γ, γ′ a direct summand of the diagram (85), which passing to limits gave di-
rect summands of MorD(ML

γ ,M
L′
γ′ ), matching exactly the desired description of the

morphism object in Theorem 5.53. Note that if γ′ is closed of rank a′, then it is
locally equivalent to an a′-fold direct sum. In this case, each direct summand of
MorD(ML

γ ,M
L′
γ′ ) thus appears with multiplicity a′.

By Lemma 5.58, the diagram (85) fully arises from morphisms between the seg-
ments of γ and γ′. These morphisms are all each accounted for in exactly one of the
direct summands of the diagram (85) described above. These direct summands thus
describe the entirety of the diagram (85) and we may conclude that Theorem 5.53
holds for γ not closed.

Case 2: γ is closed.
The global section ML

γ is given by the coequalizer of the diagram (81), so that the
R-module MorL(ML

γ ,M
L′
γ′ ) is equivalent to the equalizer of the following diagram in

RModR.
MorL((ML

η )⊕a,ML′
γ′ ) MorL((ZL

e )⊕a,ML′
γ′ ) (88)

The R-module MorL((ML
η )⊕a,ML′

γ′ ) ≃ MorL(ML
η ,M

L′
γ′ )⊕a can be determined using

its description as the limit of the a-fold direct sum of the diagram (85). All di-
rect summands of (85) associated to intersections between η and γ′ yield direct
summands of the diagram (88) of the form

N 0

so that passing to limits yields the direct summandsN ⊂ MorD(ML
γ ,M

L′
γ′ ). However,

not all summands of MorD(ML
γ ,M

L′
γ′ ) have to be of this form, because there can be

crossings between γ and γ′ which do not restrict to a crossing between η and γ′.
These remainder of this proof consists of an account of these summands.
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Since η is not a matching curve, the direct summands associated to the inter-
sections of η and γ′ in general do not describe the entirety of MorL((ML

η )⊕a,ML′
γ′ ).

We additionally have to include the direct summands described in Remark 5.60 to
obtain the entire morphism object MorL((ML

η )⊕a,ML′
γ′ ). The closed curve γ was

opened at e to the curve η. We denote the first segment of η by δ2 and the last
segment of η by δ1. We denote the compose of δ1 and δ2 at e by µ. We now show
the following.

a) Every crossing from γ to γ′ (or from γ′ to γ), which does not give rise to a crossing
of µ and γ′, leads to a direct summands Mor(L,L′)⊕a (or Mor(L,L′)⊕a[−1]) in
the equalizer of (88).

b) Direct summands of MorL((ML
η )⊕a,ML′

γ′ ) as described in Remark 5.60 and direct
summands of MorL((ZL

e )⊕a,ML′
γ′ ) do not persist in the equalizer of (88) if they

cannot be accounted for by a crossing as above.

If γ′ is closed, statement a) needs to be modified, as in the previous case where γ is
not closed, to include the a′-fold multiplicity. Together with the previous discussion,
the statements a) and b) then imply that MorD(ML

γ ,M
L′
γ′ ) is the direct sum of the

desired number of suspensions or deloopings of Mor(L,L′), concluding this proof.
We begin by showing part a). The curves γ and γ′ can be chosen so that their

crossing restricts to an intersection between γ and the composite of two segments
δ′
y and δ′

y+1, with y ∈ I ′, of γ′ which end, respectively, begin at e. We denote the
two vertices incident to e by v1 and v2 and, reorienting η, γ′ if necessary, can assume
that both δ′

y and δ1 lie at v1 and both δ′
y+1 and δ2 lie at v2.

We distinguish the following two cases.

1) δ1(1) ∈ ∂Σv1 precedes δ′
y(1) ∈ ∂Σv1 in the clockwise orientation on the inter-

sected boundary component of ∂Σv1 and δ2(0) ∈ ∂Σv2 precedes δ′
y+1(0) ∈ ∂Σv2 in

the clockwise orientation on the intersected boundary component of ∂Σv2 . This
means that the crossing goes from γ to γ′

2) δ1(1) ∈ ∂Σv1 follows δy(1) ∈ ∂Σv1 in the clockwise orientation on the inter-
sected boundary component of ∂Σv1 and δ2(0) ∈ ∂Σv2 follows δ′

y+1(0) ∈ ∂Σv2 in
the clockwise orientation on the intersected boundary component of ∂Σv2 . This
means that the crossing goes from γ′ to γ.

In the case 1), we find by Remark 5.60 a direct summand Mor(L,L′)⊕a ⊕
Mor(L,L′)⊕a ⊂ MorL((ML

η )⊕a,ML′
γ′ ), where the first copy of Mor(L,L′)⊕a arises

from the boundary intersection of δ2 and δ′
y+1 and the second copy of Mor(L,L′)⊕a

arises from the boundary intersection of δ1 and δ′
y. In terms of the diagram (88),

the crossing corresponds to a direct summand of (88) of the form

Mor(L,L′)⊕a ⊕Mor(L,L′)⊕a Mor(L,L′)⊕a
(0,id)

(id,0)

whose equalizer gives a direct summand Mor(L,L′)⊕a ⊂ MorL(ML
γ ,M

L′
γ′ ).
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In the case 2), there are no morphisms in MorL((ML
η )⊕a,ML′

γ′ ) associated to the
crossing. Using part (2) of Lemma 5.58, we thus find a direct summand of (88)
corresponding to the crossing of the following form.

0 Mor(L,L′)⊕a

Passing to equalizers, we thus obtain the direct summand Mor(L,L′)⊕a[−1] of
MorL(ML

γ ,M
L′
γ′ ). This concludes the proof of a).

For part b), we assume that part of γ′ passes along e but does partake in a
crossing of γ′ and γ. We employ the same notation for the segments of γ′ at e as
above. In this case, either δ1(1) ∈ ∂Σv1 and δ′

y+1(0) ∈ ∂Σv2 both follow or both
precede δy(1) ∈ ∂Σv1 and δ2(0) ∈ ∂Σv2 , respectively. The corresponding direct
summand of (88) is thus of the following form.

Mor(L,L′)⊕a Mor(L,L′)⊕a
0

id
(89)

The equalizer of (89) vanishes, showing b).

Proof of Theorem 5.54. The proof of Theorem 5.54 goes along the same lines as the
proof of Theorem 5.53.

Case 1: γ is open.
As shown in Section 5.5.2, each self-crossing or directed boundary self-intersection
gives rise to direct summands of MorL(ML

γ ,M
L′
γ ) given by suspensions or deloopings

of Mor(L,L′) or MorR(Q,Q′) of the desired form.
Assume that all segments of γ are of the second type. Given a segment δ of the

second type, we have MorL(ML
δ ,M

L′
δ ) ≃ Mor(L,L′), see Table 3. Similarly, we have

MorL(ZL
e , Z

L′
e ) ≃ Mor(L,L′). The constant diagram with value Mor(L,L′) thus

defines a direct summand of (85). Passing to limits, we obtain the direct summand
Mor(L,L′) ⊂ MorL(ML

γ ,M
L′
γ ).

Assume that exactly one segment of γ is of the first type. The curve γ is thus
singular and exactly one end lies at a vertex of T. Reorienting γ if necessary, we can
assume that γ begins at the vertex. The endomorphisms of the segments of γ thus
yield a direct summand of (85), which assigns to (Λ2

0)op×{1} the diagram (86) and
is constant on the remainder of Eop

γ with value Mor(L,L′). The limit of this direct
summand is given by MorR(Q,Q′) ⊂ MorL(Mγ,Mγ).

If exactly two segments of γ are of the first type, then γ is singular, and begins and
ends at vertices of T. Let N be the number of segments of γ. The endomorphisms
of the segments of γ yield a direct summand of (85), which assigns to (Λ2

0)op × {1}
the diagram (86), to (Λ2

0)op × {N − 1} the diagram

Mor(L,L′) MorR(Q,Q′)

Mor(L,L′)
≃
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and to the remainder of Eop
γ the constant diagram with value Mor(L,L′). To

compute the limit of this diagram, one uses Mor(L,L′) ≃ MorR(Q, ϕ∗ϕ
∗(Q′)) and

ϕ∗ϕ
∗(Q′) ≃ Q′⊕Q′[1−n]. The resulting direct summand is given by MorR(Q,Q′)⊕

MorR(Q,Q′)[−n] ⊂ MorL(Mγ,Mγ). If the endpoints of γ furthermore coincide, then
the singular intersections of MorL(Mγ,Mγ) produce two further direct summands
given by suspensions or deloopings of MorR(Q,Q′).

The above identified direct summand of MorL(ML
γ ,M

L′
γ ) account for the entire

morphism object and match the count given in Theorem 5.54. This thus concludes
the proof in the case that γ is not closed.

Case 2: γ is closed.
We need to compute the equalizer of (88) with R = k a field. Showing that each self-
crossing of γ contributes a direct summand given by (Mor(L,L)⊕Mor(L,L)[−1])⊕a2

to the equalizer of (88) is analogous to the discussion in the proof of Theorem 5.53
in the case that γ is closed. A novel argument is required to determine the endomor-
phisms not corresponding to self-crossings. The morphisms from ML

η to ML
γ arising

from the morphisms between the sections associated to the common segments of η, γ
(all of the second type) contribute a direct summand Mor(L,L)⊕a2 ⊂ Mor(ML

η ,M
L
γ ).

Each of the two composites with the pointwise inclusion ZL
e →ML

η in L arising from
an end of η at e yields an equivalence between the direct summand Mor(L,L)⊕a2 of
both MorL(ML

η ,M
L
γ ) and MorL(ZL

e ,M
L
γ ). As we explain below, these equivalences

give rise to the following direct summand of (88).

Mor(L,L)⊕a2 Mor(L,L)⊕a2id

J ◦(-)◦J −1
(90)

Above J denotes the monodromy equivalence, which was assumed to be a single
Jordan block with eigenvalue λ ∈ k\{0}. The matrix J −1 is the inverse matrix.
Using the equivalence Mor(L,L)⊕a2 ≃ Mor(L⊕a, L⊕a), the morphism J ◦ (-)◦J −1

takes a map L⊕a → L⊕a, precomposes it with the endomorphism of L⊕a given by
J −1 and postcomposes it with the endomorphism of L⊕a given by J . The equalizer
of (90) is equivalent to the fiber of the morphism

Mor(L,L)⊕a2 id −J ◦(-)◦J −1

−−−−−−−−−→ Mor(L,L)⊕a2
. (91)

A direct computation shows, that the morphism from (91) maps an a × a-matrix
(mi,j)1≤i,j≤a with entries in Mor(L,L) to the a× a-matrix (m′

i,j)1≤i,j≤a with

−m′
i,j = mi+1,j

λ
+
∑
l>0

(−1)lλmi,j−l +mi+1,j−l

λl+1

where we set mi,j = 0 for j ≤ 0 or i > a. The kernel of (91) thus consists of upper
triangular matrices (mi,j)1≤i,j≤a, satisfying that mi,j = mi+1,j+1 for all 1 ≤ i, j ≤
a− 1. The fiber of (91) splits as its kernel, which is equivalent to Mor(L,L)⊕a and
the delooping of its cokernel, which is given by Mor(L,L)⊕a[−1]. This shows that we
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obtain the desired direct summand of MorD(ML
γ ,M

L
γ ). We have again determined

the entire morphism object MorL(ML
γ ,M

L
γ ), showing Theorem 5.54.

To arrive at the direct summand (90), we need to describe the equivalence of
the direct summand Mor(L,L)⊕a2 obtained from composing the two equivalences
contained in the following diagram in RModk, arising from restricting morphisms to
the two endpoints of η.

Mor(L,L)⊕a2

Mor(L,L)⊕a2 MorL
((
ML

η

)⊕a
,ML

γ

)
Mor(L,L)⊕a2

MorL
((
ZL
e

)⊕a
,ML

γ

)
MorL

((
ZL
e

)⊕a
,ML

γ

)

≃≃

(92)

This equivalence is affected by two kinds of monodromy. Firstly, the monodromy
of the perverse schober FT(k) along γ, see also Section 3.3.4, which we show to be
trivial. Secondly, the monodromy equivalence of (γ, L), given by the Jordan-block
J .

Consider a segment δi of γ lying at vi and connecting ei and ei+1. We assume that
δi turns counterclockwise, the clockwise case is analogous. Up to the action of the
paracyclic twist functor TF(vi), see Lemma 3.31, we can assume that FT(k)(vi → ei)
and FT(k)(vi → ei+1) are given by T1◦ϱ1, respectively, T2◦ϱ2, with T1, T2 each given
by one of the two autoequivalences id, T , using the notation from Construction 5.14.
The left adjoint ς2 of ϱ1 is right adjoint to ϱ2, see Lemma 3.24. Since ς2 is a fully
faithful functor, it thus follows that ϱ2◦ς2 ≃ idRModR[tn−2] . The transport FT(k)→(δi)
along δi is thus a power of the involution T . The total monodromy FT(k)→(γ, e)
of FT(k) along γ is hence, for any choice edge e along which γ passes, given by
i-th power of the involution T for some i ∈ Z. The integer i is even, as follows
from inspecting the construction of FT(k) and from the observation that there are
an equal number of halfedges being transversed by γ which carry an even or odd
labeling in the chosen total orders. It follows that the monodromy of FT(k) along γ
is trivial.

We proceed by spelling out in detail how the equivalence (92) arises from the
composition of the two kinds of monodromy.

The morphism object Mor(ML
η ,M

L
γ ) is given by the limit of (85). Instead of

directly computing the equivalence in (92), we can thus equivalently compute the
equivalences obtained by tracing along the segments of η, i.e. compose the endomor-
phisms of Mor(L,L)⊕a2 contained in the commutative diagrams
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Mor(L, L)⊕a2 Mor(L, L)⊕a2 Mor(L, L)⊕a2

Mor
(
ZL
ei(e

i), ML
δi

(ei)
)⊕a2

Mor
(
ML
δi

(ei), ML
δi

(ei)
)⊕a2

MorVn
ϕ∗

(
ML
δi

(vi), ML
δi

(vi)
)⊕a2

MorL
((

ZL
ei

)⊕a
, ML

γ

)
MorL

((
ML
δi

)⊕a
, ML

γ

)

≃

≃

≃

≃ ≃

≃

≃ FT(vi→ei)

Mor(L, L)⊕a2 Mor(L, L)⊕a2 Mor(L, L)⊕a2

MorVn
ϕ∗

(
ML
δi

(vi), ML
δi

(vi)
)⊕a2

Mor
(
ML
δi

(ei+1), ML
δi

(ei+1)
)⊕a2

Mor
(
ZL
ei+1(ei+1), ML

δi
(ei+1)

)⊕a2

MorL
((

ML
δi

)⊕a
, ML

γ

)
MorL

((
ZL
ei+1

)⊕a
, ML

γ

)

≃

≃

≃

≃

≃

FT(vi→ei+1)
≃

with 1 ≤ i ≤ N , where γ has N segments δi, i ∈ I = Z/NZ, lying at vi ∈ T0 and
beginning and ending at the edge ei, respectively, ei+1. For i = N , the morphism
FT(vn → e1) in the above diagram needs to additionally be composed with the
endomorphism J ◦ (-). To justify this, we make a choice of coequalizer ML

γ of (81),
which assigns to each edge v → e the morphism ML

η (v → e)⊕a (strictly and not
just up to equivalence), except for the morphism vn → e1, where ML

η (vn → e1)⊕a is
composed with the equivalence J . The precomposition with J −1 arises from the
appearance of J −1 in (81).

Before explaining why the equivalences in the above diagram also describe the
monodromy of FT(k), we have to take care of some further contributions. These are
the equivalences

Ei : Mor(ML
δi−1

(ei),ML
δi−1

(ei))⊕a2 ≃ Mor(ZL
ei

(ei), ZL
ei

(ei))⊕a2 ≃ Mor(ML
δi

(ei),ML
δi

(ei))⊕a2

which arise from the fact that the inclusions ZL
ei
→ ML

δi
,ML

δi−1
were only specified

up to k-linear equivalence (since the local sections were defined as Kan extensions).
Under the equivalences with Mor(L,L)⊕a2 , the equivalence Ei corresponds to an
endomorphism D−1(-)D of Mor(L,L)⊕a2 , where D is some invertible diagonal a×a-
matrix with entries in π0 Map(L,L), all of whose diagonal entries are identical (since
we took the direct sum of local sections in the gluing). It follows that D−1(-)D is
the identity on Mor(L,L)⊕a2 . Thus, the equivalences Ei do not contribute to the
diagram (90).

The left and right adjoints of the functors FT(vi � ei) contained in the middle
parts of the above diagrams are fully faithful and hence define right inverses of
FT(vi � ei). If δi wraps clockwise, then ML

δi
(vi) ≃ radj(FT(vi � ei))(ML

δi
(ei)).
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Similarly, if δi wraps counterclockwise, then ML
δi

(vi) ≃ ladj(FT(vi � ei))(ML
δi

(ei)).
Tracing along the middle part of the above diagram thus yields a contribution of
the monodromy of FT(k). This concludes the argument, why the direct summand
(90) of the diagram (88) appears.

We describe in Example 5.61 global sections arising from matching data, whose
matching curves are non-pure, and for which an arising morphism object does not
simply count intersections.

Example 5.61. Consider the 4-gon with an ideal triangulation with dual trivalent
spanning T and two matching curves γ, γ′, which can be depicted as follows.

γ′

γ

The matching curve γ is pure, whereas γ′ is not pure. There is a directed boundary
intersection from γ to γ′ and a crossing from γ′ to γ. For any L,L′ ∈ RModR[t1],
there are apparent matching data (γ, L) and (γ′, L′).

The computation of MorH(T,FT(R)(ML
γ ,M

L′
γ′ ) boils down to the computation of

the limit of the Eop
γ -indexed diagram:

0 Mor(L,L′)[1]

0 Mor(L,L′) Mor(L,L′)[1]

≃α (93)

Spelling out its construction, we see that the morphism α is given by precomposition
with the morphism sL : L → TRModR[t1](L)[1] ≃ L[−1], arising from the fiber and
cofiber sequence of endofunctors of RModR[t1]

ϕ∗ϕ∗ → idRModR[t1]
s−→ TRModR[t1] [1]

describing the twist functor of the adjunction ϕ∗ ⊣ ϕ∗. The natural transformation
s is also called the section of the twist functor. It evaluates to a zero morphism at
L if L ∈ Im(ϕ∗), but evaluates non-trivially for other L (such as L = R[t1]). The
limit of the diagram (93) is given by the fiber of the morphism α. If α = 0, the limit
thus consists of the sum of two copies of suspensions or deloopings of Mor(L,L),
matching the number of intersections of γ and γ′. If α ̸= 0, this is not true.
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5.5.4 Indecomposability of objects

Corollary 5.62. Let R = k be a field and L ∈ RModk[tn−2], such that H0 End(L) ≃
k.

(1) Let (γ, L) be an open matching datum in S\M , such that γ is finite and pure.
The discrete endomorphism ring H0 End(ML

γ ) is local and ML
γ thus indecom-

posable.

(2) Let (γ, L) be a closed matching datum, whose monodromy matrix is a single Jor-
dan block and such that γ is pure. The discrete endomorphism ring H0 End(ML

γ )
is local and ML

γ thus indecomposable.

Remark 5.63. For L = ϕ∗(k), k[tn−1], k[t±n−1] ∈ RMmodk[tn−1], we have an equiv-
alence H0(End(L)) ≃ k. We can thus apply Corollary 5.62 to matching data with
local values of different sizes.

Proof of Corollary 5.62. We begin with proving part (1). By Theorem 5.54, we
have a complete description of the discrete endomorphism algebra H0 End(ML

γ ).
The degree 0 morphisms arising from crossings, directed boundary intersections and
singular intersections of distinct endpoints generate an ideal J . Every endomorphism
of ML

γ is the sum of an endomorphism in J and a k-linear multiple of the identity.
We argue below, that an endomorphism α = β + λ idML

γ
of ML

γ with β ∈ J is an
equivalence if and only if λ ∈ k is nonzero. It thus follows, that J is the unique
maximal ideal, showing that H0 End(ML

γ ) is a local ring. This shows part (1).
The argument generalizes to the setting in part (2). We can again form a maximal

ideal out of the contributions from crossings, out of the copy of H0 Mor(L,L)⊕a−1

consisting of strictly upper triangular matrices in the kernel of (91) and the copy of
H0(Mor(L,L)⊕a[−1]).

Let β ∈ J and λ ∈ k. We conclude this proof by showing that the endomorphism
α = β+λ idML

γ
of ML

γ is invertible if and only if λ ̸= 0. The morphism α is a natural
transformation between sections and thus invertible if and only if the morphism
α(x) : ML

γ (x)→ML
γ (x) in FT(x) is an equivalence for all x ∈ Exit(T). Locally, near

a vertex v of T with incident edges e1, . . . , en, FT is described by the conservative
functor

(ϱ1, . . . , ϱn) : FT(v) ≃ Vnf∗ −→ RMod×n
R[tn−2] ≃

n∏
i=1

FT(ei) .

It thus suffices to consider the case that x = e ∈ Exit(T) is a vertex of T.
Before we proceed, let us note that the endomorphisms of ML

γ appearing in
the direct summand H0

(
Mor(L,L)[−1]⊕icr(γ,γ)

)
evaluate to zero at all objects x ∈

Exit(T). This is easily seen from tracing through their construction. We thus do not
need to consider these endomorphisms in the following to determine whether α(x)
is invertible.

Let now x = e be an edge of T and choose a halfedge with incident vertex v.
The object ML

γ (e) ∈ Vnϕ∗ decomposes into the sum of the evaluations at e of the
local sections associated with the different segments of γ at v. There are three pure
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segments at v with an intersection with e, two of the second type and one of the
first type. The corresponding local sections are pairwise semiorthogonal, since the
morphisms between these sections arise from directed boundary intersections in Σv

at the boundary component intersecting e. From this directedness, it follows that
α(e) is of a block upper triangular shape and hence an equivalence if and only if for
any such segment δ at v, the restriction of α(e) to an endomorphism of ⊕δi=δM

L
δ (e)

is an equivalence, where the sum runs over the segments δi with i ∈ I of γ at v
which are identical to δ.

If δ is of the first type at v ending at e, it is obvious that the restriction of α(e)
to ⊕δi=δM

L
δ (e) is an equivalence if and only if λ ̸= 0.

Suppose that δ is a segment of the second type at v ending at e. Let B be the
boundary component of Σv corresponding to the chosen halfedge of e (this essentially
means B intersects e, but remains correct if e is a loop). We consider each segment
δi = δ as oriented, so that it ends at B. An orientation of a segment δi, with i ∈ I,
determines an orientation of γ. We can choose the map γ into S\M such that all
crossings of γ involving two segments δi = δj = δ with i ̸= j are such that they
appear after δi in the induced orientation of γ by δi (and thus also after δj in the
induced orientation of γ by δj). The curve γ induces an embedding of the segments
{δi = δ}i∈I into Σv ⊂ S\M , which endows these segments with a total order, given
by the clockwise order of the intersections with B. This total order has the following
good property: an endomorphism of γ arising from a self-crossing which evaluates
non-trivially at e always arises via evaluating at e a morphism from ML

δi
to ML

δj
with

δi = δj = δ and i < j.
If there is a directed boundary self-intersection of γ so that it goes from the

segment δi = δ to the segment δj = δ, we further distinguish two cases. In the first
case, the directed boundary intersection follows after δi in the induced oriented of
γ (by δi). It is immediate that i < j. In the second case, the directed boundary is
before δi in the induced orientation of γ. In this case, we have j = i+1, as otherwise
there would have to be crossings appearing before δi in the orientation of γ. We
swap the order of i and j = i+ 1.

In the constructed order of the segments δi = δ, we find that if α(e) induces a
nonzero morphism from ML

δi
to ML

δj
with δi = δj = δ, then i < j. This means that

α(e) restricts to an endomorphism of ⊕δi=δM
L
δ (v) given by an upper triangular

matrix, with diagonal entries λ. It follows that any edge e, α(e) is an equivalence if
and only if λ ̸= 0, concluding the proof.

5.6 Further topics
5.6.1 The Jacobian gentle algebra

We fix a marked surface S with an n-valent spanning graph T.

Definition 5.64. Let k be a commutative ring. The Jacobian algebra JT is defined
as the 0-th homology k-algebra JT = H0(GT) of the relative Ginzburg algebra GT

(defined over k).
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Consider the sub-quiver PT of the quiver Q̃T of Definition 5.4 consisting of all
vertices and the arrows av,i,i+1, where i + 1 denotes the counterclockwise halfedge
predecessor of the halfedge i, meaning that PT consists of all arrows of Q̃T lying
in degree 0. It is immediate from the definition of GT that JT ≃ kPT/I, where
the ideal I = {av,i,i+1av,i−1,i} consists of certain paths of length. With this, it is
straightforward to see that the Jacobian algebra JT is a gentle algebra, in the sense
recalled in Definition 5.65. While the gentle algebra JT is finite dimensional if S has
no punctures, it is infinite dimensional if there are punctures, as the cycles wrapping
around the puncture do not lie in the ideal I.

Definition 5.65. A k-algebra is called a gentle algebra if it is isomorphic to the
path algebra kQ/I of a finite quiver Q modulo an ideal I generated by paths of
length 2, such that

• every vertex of Q has at most two incoming and two outgoing arrows.

• For each arrow a, there is at most one arrow b such that ab lies in I and there
is at most one arrow b such that ba ∈ I.

• For each arrow a, there is at most one arrow b such that ab /∈ I and there is
at most one arrow b such that ba /∈ I.

The main result of this section is the following description of the homology
algebra H∗(GT) in the case that S has no punctures.

Proposition 5.66. Let R = k be a commutative ring and suppose that S has no
punctures. There exists an isomorphism of dg-algebras with vanishing differentials
between H∗(GT) and the tensor algebra JT ⊗k k[tn−2].

Other classes of Ginzburg algebras whose homology has been computed include
non-relative Ginzburg algebras of acyclic quivers, see [Her16], and some classes of
relative Ginzburg algebras whose homology is concentrated in degree 0, see [Wu23b,
Section 8.2].

Remark 5.67. If S has punctures, the curves ce associated to the edges of T have
common infinite ends. We expect that a generalization of Theorem 5.53 which allows
common infinite ends would allow to extend Proposition 5.66 to arbitrary surfaces.

Proof of Proposition 5.66. Let L = k[tn−2] ∈ RModk[tn−2]. By Proposition 5.49,
there exists an isomorphism of dg-algebras

GT ≃ End
(⊕

e

ML
ce

)
, (94)

so that it suffices for part (1) to construct an isomorphism between H∗ End
(⊕

eM
L
ce

)
and JT ⊗k k[tn−2].
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Given two edges e1, e2 of T, the associated pure matching curves ce1 , ce2 do not
intersect, except for directed boundary intersections. Applying Theorem 5.53, we
obtain for each directed boundary intersection a direct summand

k[tn−2] ≃ Mor(k[tn−2], k[tn−2]) ⊂ End
(⊕

e

ML
ce

)
.

This shows that there exists an equivalence in RModk

H∗ End
(⊕

e

ML
ce

)
≃ H0 End

(⊕
e

ML
ce

)
⊗k k[tn−2] . (95)

Since there exists an isomorphism of k-algebras H0 End
(⊕

eM
L
ce

)
≃JT by (94), to

conclude this proof, it suffices to show that (95) is also an isomorphism of dg-algebras
(with vanishing differentials). For that, we need to compare the composition in the
two dg-algebras.

We call two directed boundary intersections from ce1 to ce2 and ce2 to ce3 com-
posable if they lie at the same boundary component B of S\M . In this case, starting
at B, the curves are composed of identical segments such that ce1 shares the same
segments with both ce2 and ce3 and the two curves ce2 and ce3 share at least as
many segments with each other as with ce1 . Let a, b ∈ {1, 2, 3} with a ≤ b. Each
generating morphisms given by tin−2 ∈ k[tn−2] ⊂ End(⊕eM

L
ce) with i ≥ 0 associated

to the boundary intersections of cea , ceb at B, or the endomorphisms of ML
cea

if a = b,
corresponds to a morphism between the sections ML

cea
,ML

ceb
which restricts for each

shared segment δ of cea , ceb to the endomorphism tin−2 ∈ k[tn−2] ≃ End(ML
δ ). We

thus see, that the composite of tin−2 : ML
cea
→ ML

ceb
with tjn−2 : ML

ceb
→ ML

cec
is given

by ti+jn−2 : ML
cea
→ML

cec
for all a ≤ b ≤ c ∈ {1, 2, 3}.

We also note that if two boundary intersections are not composable, then the
corresponding endomorphisms of ⊕eM

L
ce compose to zero.

Comparing the two sides of (94) in degree 0, one obtains that dircted boundary
intersection from ce1 to ce2 are in bijection with nonzero paths from e1 to e2 in JT.
Using that by construction H0(α) is an isomorphism of k-algebras, we further obtain
that two boundary intersections are composable if and only if the corresponding
paths in JT are composable with nonzero composite. The description of the product
of the generating morphisms of End

(
ML

ce

)
given above implies that α commutes

with the multiplications and is thus an isomorphism of dg-algebras, concluding this
proof.

5.6.2 Derived equivalences from flips of the n-angulation

In this section, we construct derived equivalences between the global sections of the
perverse schobers FT(R) arising from changing the n-valent spanning graph T by a
flip of an edge. In particular, in the case R = k, we thus obtain derived equivalences
between relative Ginzburg algebras. Related results on derived equivalences of non-
relative and relative Ginzburg algebras from mutations of quivers with potentials

175



were obtained in [KY11,Wu23a]. We then further describe the action of these derived
equivalences in terms of the partial geometric model.

Given a decomposition of a surface into n-gons (n ≥ 3) and an edge e of one of
the n-gons which is not a loop, there are n− 2 possible flips of the decomposition,
which are obtained by replacing e by a different diagonal contained in the (2n− 2)-
gon formed by the two adjacent n-gons of e. For example, the local pictures of the
two possible flips of a decomposition into 4-gons are depicted in Figure 3.

× × ×××× flipflip

Figure 3: The two possible flips of a decomposition into 4-gons (in green) at an edge and the
corresponding change in the dual ribbon graphs (in black).

Starting with a flip of a decomposition into n-gons of the 2n−2-gon and passing
to the dual ribbon graphs, we obtain the local description of a flip of a ribbon graph
at an edge e. The flip of an n-valent ribbon graph T at a an edge e which is not
an internal loop is defined by locally at e changing T as above and away from e not
changing T.

We proceed with describing flips of n-valent ribbon graphs in terms of contrac-
tions of ribbon graphs. It suffices to restrict to a flip at an edge, which moves the
edge by one step in the counterclockwise direction. We use the following graphical
notation for ribbon graphs from Notation 3.5. If an edge ends in an integer, that
means that this edge represents that number of edges.

The flip by one step is realized by two spans of contractions which are everywhere
trivial, except near the edge which is being flipped, where they can be depicted as
follows.

n− 2

× ×

n− 2

c1←−

n− 2

× · · ×

n− 2

c2−→

n− 2

× · ×

n− 2

(96)

n− 2

× · ×

n− 2

c3←−

n− 2

× · · ×

n− 2

c4−→

n− 1

× ×

n− 1

(97)
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Applying Proposition 3.47, we can use the above contractions of ribbon graphs to
produce an equivalence between∞-categories of global sections of perverse schobers
parametrized by the involved ribbon graphs. To this end, we describe below a
collection of parametrized perverse schobers, using Notation 3.42. Below, T denotes
the autoequivalence of RModR[tn−2] from Construction 5.14.

From now on we fix a marked surface S and an E∞-ring spectrum R. Let T1,T2
be two n-valent spanning graphs of S which differ by a flip at any edge e of T1 which
is not a loop by one step in the counterclockwise direction. We find a collection
of parametrized perverse schobers, related by equivalences and contractions, which
are everywhere identical except at e and its two incident vertices v, v′, where they
are given as follows, starting with FT1(R) and ending with FT2(R). For better
readability, we do not depict all edges below.

ϕ∗ ϕ∗
ϱ2 ϱn

ϱ3 (ϱ1,T◦ϱ1)
ϱ3

ϱn ϱ2

≃ (98)

≃ ϕ∗ ϕ∗
ϱ2 T−1◦ϱn

ϱ3 (ϱ1,ϱ1)

T−1◦ϱ3
ϱn T−1◦ϱ2

(c1)∗←−−−− ϕ∗ 0 0 ϕ∗
ϱ2 T−1◦ϱn−1

ϱ2 (ϱ1,ϱ3) (ϱ1,ϱ1) (ϱ3,ϱ1)

T−1◦ϱ2
ϱn−1 T−1◦ϱ2

≃ (99)

≃ ϕ∗ 0 0 ϕ∗
ϱ1[1] T−1◦ϱn−1

ϱ2

(ϱ1,ϱ2[1])
(ϱ3,ϱ1) (ϱ3,ϱ1)

T−1◦ϱ2
ϱn−1 T−1◦ϱ2

(c2)∗−−−−→ ϕ∗ 0 ϕ∗
ϱ1[1] T−1◦ϱn−1

ϱ2

(ϱ1,ϱ2[1])
(ϱ4,ϱ1)

T−1◦ϱ2
ϱn−1 T−1◦ϱ3

≃ (100)

≃ ϕ∗ 0 ϕ∗
ϱ4[1] T−1◦ϱn−1

ϱ2 (ϱ1,ϱ1[3]) (ϱ3[2],ϱ1)

T−1◦ϱ2
ϱn−1 T−1◦ϱ2[2]

(c3)∗←−−−− ϕ∗ 0 0 ϕ∗
ϱ3[1] T−1◦ϱn−1

ϱ2 (ϱ1,ϱ1[3])
(ϱ3,ϱ1)

(ϱ2[2],ϱ1)

T−1◦ϱ2
ϱn−1 T−1◦ϱ2[2]

≃ (101)

≃ ϕ∗ 0 0 ϕ∗
ϱ1[2] T−1◦ϱn−1

ϱ2 (ϱ1,ϱ3[3]) (ϱ3[2],ϱ1)
(ϱ2[1],ϱ2) T−1◦ϱ2

ϱn−1 T−1◦ϱ1[3]

(c4)∗−−−−→ ϕ∗ ϕ∗
ϱ3[3] ϱ1[2]

ϱn[3] (ϱ2[1],ϱ2)

T−1◦ϱn[2]
T−1◦ϱ1[3] T−1◦ϱ3[2]

≃ (102)

≃ ϕ∗ ϕ∗
ϱ3 T◦ϱ1

ϱn (ϱ2,T◦ϱ2)
ϱn

T−1◦ϱ1 ϱ3

(103)
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The above equivalences of parametrized perverse schober are each nontrivial only
at one or two vertices with label 0, where they are each given by a power of the
paracyclic twist functor TVi0 with i = 3, 4, see Section 2.1.4, except for the equiva-
lence between the parametrized perverse schober in (98) and the left parametrized
perverse schober in (99) and the equivalence between the right parametrized per-
verse schober of (102) and the parametrized perverse schober of (103). The former
is nontrivial only at the right vertex labeled ϕ∗, where it is given by the autoequiv-
alence ϵ of Vnϕ∗ , defined by restricting on each of the n− 1 components RModR[tn−2]
of the semiorthogonal decomposition to T and on the component RModR of the
semiorthogonal decomposition to the identity functor. The latter equivalence of
parametrized perverse schobers is nontrivial at the three objects of Exit(T′) corre-
sponding to e and the two incident vertices. At the left vertex, the equivalence is
given by [3], at the right vertex by ϵ−1 ◦ [2] and at e by [−2].

We thus obtain an equivalence

µ1
e : H(T1,FT1(R)) ≃−−→ H(T2,FT2(R)) , (104)

which we call the mutation equivalence. We denote the repeated mutation by µie :=
(µ1

e)i for i ∈ Z.
In the remainder of this section, we give a geometric description of µ1

e in terms
of a homeomorphism

De

( 1
n− 1π

)
: S\M → S\M

which we now describe.
Let v, v′ be the two vertices of T1 and T2 incident to e. Recall from Remark 3.54,

that ΣT1 and ΣT2 are embedded in S\M . The two subspaces Σv ∪ΣT1
Σv′ and

Σv ∪ΣT2
Σv′ of S\M are both clearly homeomorphic to the closed unit disc in R2

with 2n− 2 intervals removed from the boundary. For concreteness, we arrange the
homeomorphism so that it maps v to (−1

4 , 0) and v′ to (1
4 , 0).

We set De( 1
n−1π) to be any homeomorphism that

• restricts to a homeomorphisms between Σv ∪ΣT1
Σv′ and Σv ∪ΣT2

Σv′ which
under the above homeomorphisms with the unit disc is an automorphism of
the disc which keeps the boundary fixed and rotates the convex hull of v and
v′ by 1

n−1π.

• is constant on the remainder of S\M .

Theorem 5.68. Let T1 be an n-valent spanning graph of S and let T2 be the n-valent
spanning graph of S obtained by a flip of an edge e of T which is not a loop by one
step in the counterclockwise direction. Let (γ, L) be a matching datum in S\M , such
that γ is pure. There exists a matching datum (De( 1

n−1π) ◦ γ, L) and an equivalence
in H(T2,FT2(R))

µ1
e(ML

γ ) ≃ML
De( 1

n−1π)◦γ[m] , (105)

where
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δ′
3

δ′
2

e
δ2

δ3

v′v

δ′
3

δ′
2

e

δ3

δ2
v′

v

Figure 4: The 4-gon with two vertices v, v′, the edge e and some matching curves
(in blue) on the left and their image under De(1

2π) on the right.

• m = 1 if the first or last segment of γ is of the first type and lies at v, exiting
v through the edge e.

• m = 0 if γ is not as above. This includes all cases in which γ is regular, i.e. all
its endpoints lie in ∂S\M .

Remark 5.69. Note that the matching curve De( 1
n−1π) ◦ γ in Theorem 5.68 is not

necessarily pure. Theorem 5.68 can be extended to the global sections associated to
arbitrary matching data, but this requires a more systematic discussion of grading
structures on curves.

Remark 5.70. Under the flip of an edge e of the n-valent spanning graph T, we
rotate the vertices incident to e. This is a matter of convention: we could equally
well keep the vertices of T fixed and considered these as part of the data of S. In the
latter convention, the statement of Theorem 5.68 becomes simpler, see also [CHQ23,
Lemma 4.20], but that convention obscures the fact that flipping n times reverts back
to the original n-valent spanning graph.

Proof of Theorem 5.68. We note that it suffices to show that

µ1
e(ML

γ ) ≃ML
De( 1

n−1π)◦γ[m] (106)

for each pure matching curve γ in the (2n−2)-gon. The theorem then follows, using
that µ1

e and the object ML
γ associated to the matching curve γ in S are defined

via gluing. This leaves finitely many cases, which are directly verified by tracing
through the equivalences between the global sections of the parametrized perverse
schobers defining µ1

e.
To help the reader appreciate the appearance or absence of suspensions in the

theorem, without having to trace through the definition of µ1
e, we offer the following

hints.
To see the absence of suspensions for pure, regular segments, one simply observes

that the values of the corresponding sections at the external edges of the (2n−2)-gon
remain unchanged under µ1

e and in particular do not acquire any suspensions.
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Denote the vertices of T1 incident to e by v, v′. Let γ be a pure matching curve
starting at v (for v′ the argument is analogous). One has for Q ∈ RModR an
equivalence

ML
γ (v) ≃

(
Q

!−→ ϕ∗(Q) id−→ . . .
id−→ ϕ∗(Q)

)
∈ Vnϕ∗

(where ML
γ is the section of the schober (98)) and to verify the appearance of the

suspension, one computes

µ1
e(ML

γ )(v) ≃
(
Q

!−→ ϕ∗(Q) id−→ . . .
id−→ ϕ∗(Q)→ 0

)
∈ Vnϕ∗ ,

(where µ1
e(ML

γ ) is a section of the schober (103)), which is the suspension of (78)
(for i = 2).

Remark 5.71. Similar descriptions of derived equivalences in terms of rotations
of a disc by fractions of π also appear for instance in [Qiu16], [OPS18, Thm. 5.1]
(apply the Thm. 5.1 to the case of unpunctured n-gons), and [DJL21, Prop. 3.5.1].
The automorphism µn−1

e acts objectwise as the cotwist functor of the n-spherical
object Mγe .

5.6.3 Categorification of the extended mutation matrix

While the derived categories of Ginzburg algebras can be used to construct gen-
eralized cluster categories, there are also further and more direct links between
Ginzburg algebras and the combinatorics of cluster algebras. For example, the mu-
tation matrix of a cluster algebra can be recovered via the Euler-characteristics of
the Ext-complexes of the simple 3-spherical modules over the Ginzburg algebra asso-
ciated to the vertices of the underlying quiver. This observation is made, formulated
in the more general setting of cluster collections, in [KS08, Section 8.1]. As an ap-
plication of the partial geometric model for relative Ginzburg algebras, we extend
in this section the relation between the mutation matrices and Ginzburg algebras to
extended mutation matrices and relative Ginzburg algebras of triangulated surfaces.
The extended mutation matrix consists of the mutation matrix and the c-matrix,
the latter encodes the coefficients of the cluster algebra.

We begin by recalling the definition of the class of cluster algebras with coeffi-
cients introduced in [FT18], associated to a fixed marked surface S (possibly with
punctures) equipped with an ideal triangulation and a multi-lamination (see below).
We denote the dual trivalent spanning graph of the ideal triangulation by T.

Definition 5.72 ([FST08, Definition 4.1]). We arbitrarily label the internal edges
of T by e1, . . . , em and define the quiver QT as follows.

• The vertices are the internal edges of T.

• Let ei ̸= ej be two edges which are not loops. We add an arrow a : ei → ej
for each vertex v of T incident to halfedges of ei, ej at which the halfedge of ej
precedes the halfedge of ei in the cyclic (counterclockwise) order. The arrows
of QT thus go in the clockwise direction.
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• For each loop ei, we add further arrows obtained as follows. Consider the
unique edge ej that such ei and ej are incident to the same vertex of T, meaning
that ej is dual to the outer edge of the self-folded ideal triangle containing the
dual of ei. For l ̸= i, j, we add an arrow el → ei for each arrow el → ej and
an arrow ei → el for each arrow ej → el.

The signed adjacency matrix of T is the skew-symmetric m×m-matrix B(T) = (bi,j)
where bi,j is the number of arrows from ei to ej minus the number of arrows from
ej to ei in QT.

Definition 5.73 ( [FT18, Definition 12.1]). A lamination curve in S is a curve
γ : U → S\M with U = S1, [0, 1], [0,∞), (−∞,∞) such that

• γ does not self-intersect.

• all endpoints of γ lie in ∂S\M .

• the curve does not bound any unpunctured disc, once-punctured disc or un-
punctured 1-gon in S.

• if U is not compact, then at the infinite ends the curve spirals around a punc-
ture.

• if U = (−∞,∞), then γ is not homotopic to a curve both of whose ends spiral
around the same puncture p and which lies in a contractible neighborhood of
p containing no further punctures.

Laminations curves are considered as equivalence classes under homotopies fixing
endpoints. A lamination λ on S is a collection of pairwise non-intersecting lamina-
tion curves in S. A multi-lamination Λ = (λ1, . . . , λl) on S is a collection of l ≥ 1
laminations on S.

Figure 5: A lamination (in blue) with one spiraling curve in a surface with boundary
(in green) with 7 marked points. Boundary marked points are in orange, punctures
in red.

For more examples and counterexamples of laminations, see [FT18, Figures 32
and 33].
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Definition 5.74. Denote the internal edges of T by e1, . . . , em.

• Let γi be a lamination curve and ej not a loop. We call a crossing of γi with
ej positive (or negative), if their local arrangement is as depicted on the left
(or right) in Figure 6. We denote the signed count of such crossings of γi and
ej by (ej, γi).

• Let γi be a lamination curve and ej a loop. Let el be unique other edge incident
to the same vertex of T as ej. We define (ej, γi) := (el, γ̃i), where γ̃i is the
lamination curve obtained by replacing each infinite end of γi spiraling around
a puncture p by the infinite end spiraling around p in the opposite direction.

• The shear coordinates of a lamination λ with respect to T are given by the
m-tuple vλ,T ∈ Zn whose j-th entry is given by

(vλ,T)j =
∑
γ∈λ

(ej, γ) .

+1

ej

γi

-1
ej

γi

Figure 6: A crossing of a lamination curve γi (in blue) with an edge ej of the
triangulation contributes to the shear coordinates +1 if the crossing is as on the left
and −1 if the crossing is as on the right.

Definition 5.75. Denote the internal edges of T by e1, . . . , em. Let Λ = (λ1, . . . , λl)
be a multi-lamination on S. The extended mutation matrix B(T,Λ) is defined as
the m× (m+ l)-matrix with

• the upper m×m-submatrix is given by the signed adjacency matrix B(T),

• the (m+ l)-th row of B(T,Λ) is given by the shear coordiantes vλi,T of λi with
respect to T, for 1 ≤ i ≤ l.

The c-matrix C(T,Λ) is the m × l submatrix of B(T,Λ) consisting of the columns
m+ 1, . . . ,m+ l.

Remark 5.76. In the case Λ consists of the boundary arcs of S, each considered as a
lamination, then the extended mutation matrix B(T,Λ) coincides with the extended
mutation matrix from Definition 6.43 (defined under the assumption that S has no
punctures).
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To describe the extended mutation matrix B(T,Λ) categorically, we regard the
lamination curves as pure matching curve and consider the associated finite GT-
modules.

Notation 5.77. Let e be an internal edge of the ribbon graph T. If e is not a
loop, we let γe denote the pure matching curve which traces along e. If e is a loop,
we let γe denote the pure matching curve which traces along e (in any direction,
e.g. clockwise) and then traces along the other edge incident to the same vertex as
e. We depict γe in the these two cases as follows.

e
γe

e
γe

Notation 5.78. Let λ be a lamination of S. Using Lemma 5.37, we can consider
each lamination curve as a pure matching curve. We denote by Mλ = ⊕

γ∈λMγ ∈
D(GT) the direct sum of the objects associated to the lamination curves (recall that
Mγ := Mϕ∗(k)

γ ). For e an internal edge of T, we denote by Mγe ∈ D(GT) the object
associated to the pure matching curve γe.

Definition 5.79. Denote the internal edges of T by e1, . . . , em. Let Λ = (λ1, . . . , λl)
be a multi-lamination on S. The categorical extended mutation matrix B̂(T,Λ) =
(b̂i,j) is defined as the m× (m+ l)-matrix with

• b̂i,j = χExt∗(Mγei
,Mγej

) for 1 ≤ i, j ≤ m and

• b̂i,m+j = 1
2χExt∗(Mγei

,Mλj) for 1 ≤ i ≤ m and 1 ≤ j ≤ l,

where χ denotes the Euler-characteristic, see Section 2.1.2. The categorical c-matrix
Ĉ(T,Λ) is the m× l submatrix of B̂(T,Λ) consisting of the columns m+1, . . . ,m+ l.

Remark 5.80. We will see below that in the setting of Definition 5.79

χExt∗(Mγei
,Mγej

) = dimk Ext2(Mγei
,Mγej

)− dimk Ext1(Mγei
,Mγej

)

and
1
2χExt∗(Mγei

,Mλj) = dimk Ext2(Mγei
,Mλj)− dimk Ext1(Mγei

,Mλj) .

Theorem 5.81. Let Λ be a multi-lamination of S. The extended mutation matrices
B̂(T,Λ) and B(T,Λ) are identical.
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Proof of Theorem 5.81. We begin by showing that the upper m ×m-submatrix of
B̂(T,Λ) agrees with the signed adjacency matrix B(T). Let ei, ej be two edges
of T. If ei = ej, it is obvious that b̂i,i = 0 = bi,i. We can thus assume that
ei ̸= ej. Assume that ei, ej are not a loop and a non-loop incident to the same vertex
(i.e. dual to the two edges of a self-folded ideal triangle). Theorem 5.53 implies that
dimk Ext2(Mγei

,Mγej
) counts the number of singular intersections where γej follows

γei in the clockwise order. This number is equal to the number of arrows from ei to ej
in QT. Similarly, dimk Ext1(Mγei

,Mγej
) is equal to the number of arrows from ej to

ei in QT. All other Ext-groups vanish and it follows that b̂i,j = χExt∗(Mγei
,Mγej

) =
bi,j. In the case that ei, ej are a loop and a non-loop incident to the same vertex, with
ei the loop, we have bi,j = bj,i = 0 and Ext∗(γei , γej) = k⊕k[−1] and Ext∗(γej , γei) =
k[−2]⊕ k[−3] so that also b̂i,j = b̂j,i = 0.

We continue by showing that the c-matrices are identical. Using the additivity
of Ext, it suffices to verify that for each lamination curve γ and each edge ei there
exists an equality

1
2χExt∗(Mei ,Mγ) = (ei, γ) . (107)

We begin with the case that ei is not a loop. By Theorem 5.53, we have that
Ext∗(Mγei

,Mγ) is the direct sum of contributions arising from crossings of ei and γ.
If a crossing of γ and ei is as on the left in Figure 6, then Ext∗(Mγei

,Mγ) ≃ k⊕k[−2]
and 1

2χExt∗(Mγei
,Mγ) = 1 and the intersection thus contributes the same amount

to both sides of (107). Similarly, if the crossing of γ and γei is as on the right in
Figure 6, then Ext∗(Mγei

,Mγ) = k[−1]⊕k[−3] and the intersection also contributes
with −1 to both sides of (107).

Consider now the case that ei is a loop and let e′
i be the unique other edge of T

incident to ei. If γ does not have an infinite end spiraling around the puncture at
which ei lies, then both sides of (107) vanish. We thus assume that such a spiraling
infinite end exists. Consider the vertex v incident to e′

i at which ei does not lie and
consider the two edges e1 ̸= e2 incident to v such their cyclic (counterclockwise) order
is given by e′

i, e1, e2, e
′
i. There are four possible arrangements: the end of γi either

arrives at e′
i first passing along e1 or e2 and the infinite end either spirals clockwise or

counterclockwise. In the clockwise case, one finds Ext∗(Mγei
,Mγ) ≃ k[−1] ⊕ k[−3]

if γ passes along e1 and Ext∗(Mγei
,Mγ) ≃ k ⊕ k[−1] ⊕ k[−2] ⊕ k[−3] if γ passes

along e2 (in this case, there are two crossings). In the counterclockwise case, one
finds Ext∗(Mγei

,Mγ) ≃ 0 if γ passes along e1 and Ext∗(Mγei
,Mγ) ≃ k ⊕ k[−2] if γ

passes along e2. In each case, we thus find as desired

1
2χExt∗(Mγei

,Mγ) = 1
2χExt∗(Mγe′

i

,Mγ̃) = (e′
i, γ̃) = (ei, γ) ,

where γ̃ is as in Definition 5.74. We have shown that the c-matrices are also identical,
concluding the proof.
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6 Cluster categories of unpunctured surfaces
We fix a field k and an unpunctured marked surface S with a trivalent spanning
graph T. Construction 5.14 yields a T-parametrized perverse schober FT(k), in the
following denoted FT, whose∞-category of global sections H(T,FT) is equivalent to
the unbounded derived ∞-category of the relative Ginzburg algebra GT associated
with T. The goal of this section is to describe the generalized cluster category

CS := Ind
(
Dperf(GT)/Dfin(GT)

)
associated to GT and show that it is an additive categorification of a cluster algebra
with coefficients associated with S. This splits as follows. Section 6.1 describes the
generalized cluster category CS abstractly, as a 1-periodic version of the topologi-
cal Fukaya category of S. Section 6.2 proceeds with a detailed description of CS,
including a classification of all indecomposable, compact objects in terms of pure
matching curves in S. Section 6.3 introduces the relevant cluster and skein algebras
and describes their categorification in terms of CS. The relation of CS with the
’usual’ triangulated 2-Calabi–Yau cluster category of S, as well as variants of the
results of this section for n-angulated surfaces are discussed in Section 6.4.

Since in this section, we are working exclusively linearly over a field k, we will
write D(A) for the derived∞-category of a k-linear dg-algebra A, instead of RModA,
see also Proposition 2.25. We write Dperf(A) ⊂ D(A) for the full subcategory
consisting of compact objects and Dfin(A) ⊂ D(A) for the full subcategory consisting
of modules with finite dimensional total homology over k.

6.1 Generalized cluster categories and perverse schobers
We begin in Section 6.1.1 by showing that the Verdier quotient Dperf(k[t1])/Dfin(k[t1])
is equivalent to the derived ∞-category Dperf(k[t±1 ]) of the graded Laurent algebra
k[t±1 ], and relating the non-vanishing of this quotient to the failure of the monadicity
of the functor ϕ∗ : D(k[t1]) → D(k), where ϕ : k[t1] t1 7→0−−−→ k. This provides a ’local’
computation, to be applied in Section 6.1.2, where we show that FT splits into a
semiorthogonal decomposition of perverse schobers. In Section 6.1.3, we show that
the global sections of one component of this semiorthogonal decomposition describes
the 1-periodic topological Fukaya category of S. In the final Section 6.1.4, we show
that the 1-periodic topological Fukaya category describes the generalized cluster
category CS.

6.1.1 Graded Laurent algebras and monadicity

For background on monadic adjunctions, see Section 2.1.5. We fix an integer n ≥ 3.
We are interested in the monadic adjunction arising from the spherical adjunction

f ∗ : D(k)←→ Fun(Sn−1,D(k)) :f∗

from Section 5.2. In the case n = 3, this adjunction describes the singulari-
ties of the perverse schober FT from Construction 5.14. Let M = f∗f

∗ be the

185



adjunction monad and denote by Fun(Sn−1,D(k))mnd := LModM(D(k)) the sta-
ble, presentable ∞-category of left modules over M , also called the Eilenberg-
Moore ∞-category of the monad M . We have an associated fully faithful functor
Fun(Sn−1,D(k))mnd → Fun(Sn−1,D(k)), which we denote by imnd. In the following,
we identify Fun(Sn−1,D(k))mnd with its essential image under imnd.

Lemma 6.1. The object f ∗(k) ∈ Fun(Sn−1,D(k))mnd is a compact generator.

Proof. The restriction of f∗ to Fun(Sn−1,D(k))mnd is by definition monadic. Its left
adjoint (f ∗)mnd is obtained from f ∗ by restricting the target. The k-linear functor
(f ∗)mnd is fully determined by the image of k, which is f ∗(k). It is thus equivalent
to the functor (-)⊗ f ∗(k) (defined using the k-linear structure). The adjunction

(-)⊗ f ∗(k) ⊣ MorFun(Sn−1,D(k))mnd(f ∗(k), -) ,

and the facts that the right adjoint MorFun(Sn−1,D(k))mnd(f ∗(k), -) ≃ (f∗)mnd is conser-
vative, because monadic, and that k ∈ D(k) is compact generator, now imply that
f ∗(k) compactly generates Fun(Sn−1,D(k))mnd.

Recall from Proposition 5.11, that there exists an equivalence of k-linear ∞-
categories

Fun(Sn−1,D(k)) ≃ D(k[tn−2]) .

Lemma 6.2. There exist equivalences of k-linear ∞-categories

Fun(Sn−1,D(k))mnd ≃ Ind Fun(Sn−1,Dperf(k)) ≃ IndDfin(k[tn−2]) ,

compatible with their inclusions into Fun(Sn−1,D(k)).

Proof. Under the equivalence Fun(Sn−1,D(k)) ≃ D(k[tn−2]), the forgetful functor

MorD(k[tn−2])(k[tn−2], -) : D(k[tn−2])→ D(k)

corresponds to the evaluation functor Fun(Sn−1,D(k)) → D(k) at any point x ∈
Sn−1. This implies that Fun(Sn−1,Dperf(k)) ≃ Dfin(k[tn−2]), which yields

Ind Fun(Sn−1,Dperf(k)) ≃ IndDfin(k[tn−2])

by passing to Ind-completions.
We proceed by showing the equivalence Fun(Sn−1,D(k))mnd ≃ IndDfin(k[tn−2]).

Consider the trivial k[tn−2]-module with homology k (corresponding to f ∗(k) un-
der the equivalence Dfin(k[tn−2]) ≃ Fun(Sn−1,D(k)perf)). Let X ∈ Dfin(k[tn−2]).
We show by induction on the dimension of the homology of X, that X lies in
the stable closure ⟨k⟩ ⊂ D(k[tn−2]) of k, i.e. the smallest stable subcategory con-
taining k. The induction beginning is the case X ≃ 0 and thus clear. For the
induction step, suppose that m ∈ Z is the maximal degree in which the homology
H∗ MorD(k[tn−2])(k[tn−2], X) of X is nontrivial. We find a corresponding non-zero
morphism α : k[tn−2][m] → X, such that the composite with k[tn−2][m + n − 2] →
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k[tn−2][m] is zero. The morphism α thus induces a non-zero morphism α′ : k → X,
which is injective on homology. Taking the fiber of α′, we obtain a module fib(α′)
whose homology has one dimension less. We have by the induction assumption,
that fib(α′) ∈ ⟨k⟩. From X ≃ cof(fib(α′) → k), it follows that X also lies in
⟨k⟩. Since any object in ⟨k⟩ also lies in Dfin(k[tn−2]), we obtain ⟨k⟩ = Dfin(k[tn−2]).
This ∞-category is stable and also idempotent-complete, as having finite dimen-
sional homology is a condition preserved under retracts. Consider the k-linear en-
domorphism dg-algebras EndD(k[tn−2])(k) ≃ EndFun(Sn−1,D(k))(f ∗(k)) ≃ k ⊕ k[1 −
n]. Since f ∗(k) is by Lemma 6.1 a compact generator of Fun(Sn−1,D(k))mnd,
we have Fun(Sn−1,D(k))mnd ≃ D(EndFun(Sn−1,D(k))(f ∗(k))) ≃ D(EndD(k[tn−2])(k)),
see [Lur17, 7.1.2.1]. The perfect derived ∞-category Dperf(EndD(k[tn−2])(k)) (con-
sisting of compact objects) is by [Lur17, 7.2.4.1, 7.2.4.4] the smallest stable sub-
category of Fun(Sn−1,D(k))mnd ≃ D(EndD(k[tn−2])(k)) containing k which is closed
under retracts and thus equivalent to ⟨k⟩ = Dfin(k[tn−2]). It follows that

Fun(Sn−1,D(k))mnd ≃ D(EndD(k[tn−2])(k))
≃ IndDperf(EndD(k[tn−2])(k))
≃ IndDfin(k[tn−2]) ,

concluding the proof.

We denote by k[t±n−2] the dg-algebra of graded Laurent polynomials with gener-
ator in degree |tn−2| = n − 2. Note that if n is even, then k[tn−2] and k[t±n−2] are
graded commutative dg-algebras, whereas if n is odd, then k[tn−2] and k[t±n−2] are not
graded commutative, because t2n−2 ̸= 0. By Lemma 2.37, the following Lemma shows
that D(k[t±n−2]) arises as the Verdier quotient of D(k[tn−2]) by IndDfin(k[tn−2]).
By Lemma 6.2, this Verdier quotient is also equivalent to the Verdier quotient of
Fun(Sn−1,D(k)) by Fun(Sn−1,D(k))mnd.

Lemma 6.3. Let n ≥ 1. The ∞-category D(k[tn−2]) admits a semiorthogonal de-
composition (D(k[t±n−2]), IndDfin(k[tn−2])).

Proof. For the proof, we show that D(k[t±n−2]) = IndDfin(k[tn−2])⊥ is the stable sub-
category of D(k[tn−2]) consisting of objects b, such that MorD(k[tn−2])(a, b) ≃ 0 for all
a ∈ IndDfin(k[tn−2]). Using that the inclusion IndDfin(k[tn−2]) ⊂ D(k[tn−2]) admits
a right adjoint, the Lemma then follows from [DKSS21, Prop. 2.2.4, Prop. 2.3.2].

The objects of D(k[tn−2]) can be identified with dg-modules over the dg-algebra
k[tn−2]. Under this identification, we observe that D(k[t±n−2]) ⊂ D(k[tn−2]) is the full
subcategory consisting of k[tn−2]-modules M•, satisfying that tn−2 : Mi →Mi+n−2 is
an isomorphism of k-vector spaces for all i ∈ Z. We have

MorD(k[tn−2])(k[tn−2][i],M•) ≃M•+i .

Using that k ≃ cof(k[tn−2][n− 2]→ k[tn−2]), we thus have

MorD(k[tn−2])(k[i],M•) ≃ cof(tn−2 : M•+i →M•+i+n−2) ∈ D(k) .
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We thus find that tn−2 : Mi →Mi+n−2 is an isomorphism for all i ∈ Z if and only if
M• ∈ IndDfin(k[tn−2])⊥. This shows the desired equality

D(k[t±n−2]) = IndDfin(k[tn−2])⊥ ,

concluding the proof.

Lemma 6.4. There exists an equivalence of 1-categories Vectk ≃ hoD(k[t±1 ]), where
Vectk denotes the 1-category of k-vector spaces and hoD(k[t±1 ]) denotes the homo-
topy 1-category of D(k[t±1 ]).

Proof. Since any complex of k-vector spaces is quasi-isomorphic to its homology,
any 1-periodic complex with values in k is equivalent to an object in the image of
N(Vectk) ↪→ D(k) -⊗k[t±1 ]

−−−−→ D(k[t±1 ]). This functor is thus essentially surjective, and
using that π0 MapD(k[t±1 ])(k[t±1 ], k[t±1 ]) ≃ H0(k[t±1 ]) ≃ k, one sees that this functor is
also fully faithful on the level of homotopy 1-categories.

In the triangulated homotopy 1-category hoD(k[t±1 ]), distinguished triangles take
the form

ker(α)⊕ coker(α) (ι,0)−−→ k[t±1 ]⊕I α−−→ k[t±1 ]⊕J (0,π)−−→ ker(α)⊕ coker(α)

with ι being the kernel map and π being the cokernel map and I, J two sets.

6.1.2 A semiorthogonal decomposition of perverse schobers

The T-parametrized perverse schober FT is locally at each vertex of T encoded by
the spherical adjunction

ϕ∗ : D(k)←→ D(k[t1]) :ϕ∗ ,

with ϕ : k[t1] t1 7→0−−−→ k. The functor ϕ∗ is conservative and the adjunction ϕ∗ ⊣ ϕ∗
thus comonadic. The adjunction ϕ∗ ⊣ ϕ∗ is however not monadic. The Eilenberg-
Moore ∞-category of the monad ϕ∗ϕ

∗ can be identified with the full subcategory
IndDfin(k[t1]) ⊂ D(k[t1])), see Lemma 6.2. Using this observation, we can obtain a
vanishing-monadic and nearby-monadic T-parametrized perverse schober Fmnd

T , see
Definition 3.52, by restricting in the construction of FT in Construction 5.14 the
spherical adjunction ϕ∗ ⊣ ϕ∗ to the spherical monadic and comonadic adjunction

(ϕ∗)Ind-fin : D(k)←→ IndDfin(k[t1]) :ϕInd-fin
∗ .

We remark that to give this definition of Fmnd
T , we also use that in the construc-

tion of FT all appearing autoequivalences of D(k[t1]) preserve the full subcategory
IndDfin(k[t1]) ⊂ D(k[t1]).

By construction, there is an inclusion of perverse schobers Fmnd
T → FT.

Lemma 6.5. The inclusion Fmnd
T → FT is right admissible.
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Proof. By Remark 3.49, we need to show that for 1 ≤ i ≤ 3, the diagram

V3
(ϕ∗)Ind-fin V3

ϕ∗

IndDfin(k[t1]) D(k[t1])

ϱi ϱi (108)

is right adjointable. We only consider the case i = 1, the other cases can be treated
analogously or also follow by Proposition 3.32 from the i = 1 case.

The right adjoint of the inclusion functor i :V3
(ϕ∗)Ind-fin ↪→ V3

ϕ∗ can be determined
from the following diagram in PrRSt containing two pullback squares:

V3
ϕ∗ V3

(ϕ∗)Ind-fin

Fun(∆2,D(k[t1])) Fun(∆2, IndDfin(k[t1])

D(k) D(k)

D(k[t1]) IndDfin(k[t1])

radj(i)

⌟ ⌟

ev0

Fun(∆2,πmnd)

ev0
ϕ∗

id
ϕ∗

πmnd

The functor πmnd is the right adjoint of the inclusion. Recall that the functor ϱ1
is defined in Section 3.2.1 by evaluating at the vertex 2 ∈ ∆2. The above diagram
shows that evaluating radj(i) at 2 gives πmnd. It follows that the diagram (108) is
right adjointable.

Definition 6.6. We define the functor Fclst
T : Exit(T) → St as the cofiber of the

inclusion Fmnd
T ↪→ FT in Fun(Exit(T), St).

Lemma 6.7. The functor Fclst
T is a T-parametrized perverse schober. At each vertex

of T, it is described by the trivial spherical adjunction

0↔ D(k[t±1 ]) .

Proof. Using Lemma 6.3, this is straightforward to check by using that pushouts in
the functor category Fun(Exit(T), St) are computed pointwise in Exit(T).

Remark 6.8. The abbreviation clst stands for ’cluster’. It also forms an anagram
with lcst, which stands for ’locally constant’. Note that the perverse schober Fclst

T is
locally constant, see Definition 3.52, i.e. has no singularities.

Proposition 6.9. The pair {Fclst
T ,Fmnd

T } forms a semiorthogonal decomposition of
the T-parametrized perverse schober FT.

Proof. The inclusion α : Fmnd
T → FT is by Lemma 6.5 right admissible. A similar

argument as in the proof Lemma 6.5 further shows that the cofiber morphism FT →
Fclst
T arising from the definition of Fclst

T is the pointwise left adjoint of a left admissible
inclusion Fclst

T → FT. This shows that {Fclst
T ,Fmnd

T } indeed forms a semiorthogonal
decomposition of FT.
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6.1.3 The 1-periodic topological Fukaya category

The perverse schober Fclst
T is locally constant, i.e. has no singularities, and its generic

stalk is the derived ∞-category D(k[t±1 ]) of 1-periodic chain complexes. It is thus
locally at its vertices described by the 1-periodic derived category of the A2-quiver.
We hence refer to its ∞-category of global sections H(T,Fclst

T ) as the topological
Fukaya category of S with values in the derived ∞-category of 1-periodic chain
complexes, or the 1-periodic topological Fukaya category for short.

Proposition 6.10. The monodromy of Fclst
T along any loop in S\M is trivial.

Proof. Any loop γ in S\M is by Lemma 5.37 homotopic to a pure matching curve in
S\M (where the homotopies are allowed to cross the vertices of T). Since Fclst

T has
no singularities, we may assume by Lemma 3.57 that γ is a closed pure matching
curve, without changing the monodromy.

The monodromy of FT along γ is computed in the proof Theorem 5.54 and
shown to be trivial. The transport equivalences, and hence also the monodromy
equivalences, fix the subcategories Fclst

T (e) ⊂ FT(e) for all edges e. It follows that
the monodromy of Fclst

T along γ is also trivial.

Proposition 6.10 justifies calling H(T,Fclst
T ) the 1-periodic topological Fukaya

category of S. Indeed, combining Proposition 6.10 with Proposition 3.63 as well as
Lemma 3.62, we can further deduce that H(T,Fclst

T ) does not depend on the choice
of trivalent spanning graph T, up to equivalence. We thus write

CS := H(T,Fclst
T ) .

This ∞-category can further be considered an ∞-categorical (and Ind-complete)
avatar of the topological Fukaya (dg-)category in the sense of [DK18] with coeffi-
cients in the cyclic 2-Segal object arising from the Waldhausen S•-construction of
the 2-periodic dg-category dgModk[t±1 ] of dg k[t±1 ]-modules. In particular, Corollary
3.4.7 of [DK18] shows the following.

Theorem 6.11. The k-linear ∞-category CS = H(T,Fclst
T ) is acted upon by auto-

morphisms in ho LinCatk by the mapping class group of the marked surface (S,M)
of isotopy classes of orientation preserving diffeomorphisms S → S restricting to
the identity on ∂S.

Finally, we also record a description of the 1-periodic topological Fukaya category
CS in terms of a gentle algebra.

Proposition 6.12. There exists a(n ungraded) gentle algebra gtl and an equivalence
of ∞-categories CS ≃ D(gtl)⊗k D(k[t±1 ]).

Proof. Choose a trivalent spanning graph T of S. As observed in [HKK17], the
∞-category of global sections of a locally constant perverse schober with generic
stalk D(k) on S parametrized by T admits a formal generator whose endomor-
phism algebra is a finite dimensional, and in general graded, gentle algebra, de-
noted gtl′. Using that tensoring with D(k[t±1 ]) (with respect to the symmetric
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monoidal structure of LinCatk) preserves colimits in LinCatk, we find an equivalence
CS ≃ D(gtl′) ⊗k D(k[t±1 ]) in LinCatk. Let gtl be the ungraded gentle algebra ob-
tained from gtl′ by discarding the grading. It is easy to see that D(gtl′)⊗kD(k[t±1 ]) ≃
D(gtl)⊗k D(k[t±1 ]) in LinCatk, showing the claim.

6.1.4 The generalized cluster category of a triangulated surface

Let D be a smooth k-linear ∞-category with a compact generator X ∈ D. Then
D ≃ D(End(X)) is equivalent to the derived ∞-category of the derived endomor-
phism dg-algebra End(X). It follows from [Kel08, Lemma 4.1] that the derived
∞-category Dfin(End(X)) of modules with finite dimensional total homology over
k is a subcategory of the perfect derived ∞-category Dperf(End(X)). Note that
Dfin(End(X)) ≃ Dfin, using the notation of Definition 4.14, and Dperf(End(X)) ≃
Dc. Passing to Ind-completions yields IndDfin ⊂ D.

Definition 6.13. The generalized cluster category of D is defined as the Ind-
complete Verdier quotient

D/ IndDfin ,

i.e. as the cofiber in PrLSt.

Remark 6.14. Let D be as in Definition 6.13. Then D admits a semiorthogonal
decomposition (D/ IndDfin, IndDfin) into its generalized cluster category and its
Ind-finite part, see Lemma 2.37.

Theorem 6.15. The generalized cluster category of D(GT) is equivalent to the 1-
periodic topological Fukaya category CS = H(T,Fclst

T ).

To prove Theorem 6.15, we show that the∞-category of global sections of Fmnd
T is

equivalent to IndH(T,FT)fin and then make use of the semiorthogonal decomposition
{Fclst

T ,Fmnd
T } of FT.

Definition 6.16. We denote by H(T,FT)Ind-fin ⊂ H(T,FT) the full subcategory of
global sections X ∈ H(T,FT) satisfying that eve(X) ∈ IndDfin(k[t1]) for all edges e
of T.

Lemma 6.17. The ∞-category H(T,FT)Ind-fin is compactly generated by the object⊕
e∈T1 M

ϕ∗(k)
ce associated to finite matching data (ce, ϕ∗(k)), with ce as defined in

Section 5.4.3.

Proof. Using that ϕ∗(k) is a compact generator of IndDfin(k[t1]), it follows from
Proposition 5.49 that the objects Mϕ∗(k)

ce associated with the collection of matching
data (ce, ϕ∗(k))e∈T1 compactly generate H(T,FT)Ind-fin. We remark that for the fact
that the matching curves giving rise to this compact generator are finite, it is crucial
that the marked surface has a marked point on each boundary component.

Proposition 6.18. There exist equivalences of ∞-categories

H(T,Fmnd
T ) ≃ H(T,FT)Ind-fin ≃ IndD(GT)fin .
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Proof. It follows from the definition of Fmnd
T , that the image on global sections of

the inclusion Fmnd
T → FT consists of global sections which evaluate on each edge

of T to an object in IndDfin(k[t1]) ⊂ D(k[t1]). We thus see that H(T,Fmnd
T ) ≃

H(T,FT)Ind-fin.
We proceed with showing the equivalence H(T,FT)Ind-fin ≃ IndD(GT)fin. We can

realize both of these ∞-categories as presentable, stable subcategories of H(T,FT).
An object of H(T,FT) is finite if and only if its values at the edges of T lie in
Dfin(k[t1]) ⊂ D(k[t1]). It follows that H(T,FT)fin ⊂ H(T,FT)Ind-fin. Using that the
objects in H(T,FT)fin are compact in H(T,FT), we further get IndH(T,FT)fin ⊂
H(T,FT)Ind-fin. Lemma 6.17, in combination with the fact that the global sections
associated to finite, pure matching data with finite local value lie by construction in
H(T,FT)fin ⊂ H(T,FT)Ind-fin, now implies that both H(T,FT)Ind-fin and IndD(GT)fin

are compactly generated by the same set of objects and thus equivalent.

Proof of Theorem 6.15. Combine Proposition 6.9, part 2 of Remark 3.51 and Propo-
sition 6.18.

The dg-algebra k[t±2 ] is commutative and the∞-category D(k[t±1 ]) clearly comes
with a k[t±2 ]-linear structure. This can be used to construct a factorization of the per-
verse schober Fclst

T through LinCatk[t±2 ] → St. In particular, its limit CS = H(T,Fclst
T )

inherits a k[t±2 ]-linear structure
Proposition 6.19. The k[t±2 ]-linear ∞-category CS is smooth and proper.

Proof. Using the duality PrLSt ≃ (PrRSt)op, we find that CS is equivalent as an ∞-
category to the colimit of the right adjoint diagram of Fclst

T in PrLSt. Since the forgetful
functor LinCatk[t±2 ] → PrLSt preserves colimits, we see that that CS is furthmore
equivalent as a k[t±2 ]-linear ∞-category to the colimit in LinCatk The smoothness
thus follows from the fact that finite colimits of smooth∞-categories along compact
objects preserving functors are again smooth, see Corollary 4.31.

To see that CS is proper, consider its compact generator ⊕e∈T1 ev∗(k[t±1 ]), see
Proposition 3.39. Proposition 5.49 shows that ev∗

e(k[t±1 ]) ≃ M
k[t±1 ]
ce . Theorems 6.27

and 6.28 imply see that End(⊕e∈T1 ev∗(k[t±1 ])) is perfect in D(k[t±2 ]), showing that
CS is proper.
Theorem 6.20. Assume that char(k) ̸= 2. The k[t±2 ]-linear functor∏

e∈T∂1

eve : CS −→
∏
e∈T∂1

Fclst
T (e)

admits a weak right 2-Calabi–Yau structure.

Proof. Combine Lemma 4.37, Theorem 4.44 and Proposition 6.10.
Corollary 6.21. Assume that char(k) ̸= 2. The adjunction

∂Fclst
T :

∏
e∈T∂1

Fclst
T (e)←→ CS :

∏
e∈T∂1

eve

is spherical.
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Proof. The twist functor of the adjunction ∂Fclst
T ⊣ ∏e∈T∂1

eve is by Theorem 6.20
a suspension of the inverse Serre functor id!

CS
and thus invertible by Lemma 4.12.

The cotwist functor of the adjunction ∂Fclst
T ⊣ ∏e∈T∂1

eve can be readily determined
using the equivalence ev∗

e(k[t±1 ]) ≃ M
k[t±1 ]
ce from Proposition 5.49, and shown to be

an equivalence. It acts by permuting cyclically the copies of Fclst
T (e) ≃ D(k[t±1 ])

corresponding to the external edges of each boundary circle.

6.2 The geometric model
In this section, we describe a full geometric model for the generalized cluster category
CS, including a classification of all indecomposable objects in terms of pure matching
curves. We begin in Section 6.2.1 by specializing the partial geometric model for
D(GT) to its parts applicable to CS ⊂ D(GT). This includes an association of objects
to matching data with local value k[t±1 ], and a description of the derived Hom’s
in terms of intersections. In Section 6.2.2, we compare the computation of cones
in CS of morphisms arising from intersections with the Kauffman Skein relation.
In the final Section 6.2.3, we prove the geometrization Theorem 6.35, which states
that every compact object in CS decomposes uniquely into the direct sum of objects
associated with pure matching data and local value k[t±1 ].

In the remainder of Section 6, we always assume that k is an algebraically closed
field. For the entirety of this section, we also fix a marked surface S and an auxiliary
trivalent spanning graph T of S.

6.2.1 Objects and Hom’s

We begin by characterizing the global sections arising from matching data which lie
in the generalized cluster category CS ⊂ H(T,FT).

Lemma 6.22. Let (γ, L) be a matching datum in S\M . The following two are
equivalent:

i) The global section ML
γ ∈ H(T,FT) lies in the generalized cluster category CS.

ii) The object L lies in the full subcategory

D(k[t±1 ]) ⊂ D(k[t1]) ≃ RModk[t1] .

Proof. We note that the full subcategory CS ⊂ H(T,FT) consists of those global
sections which evaluate at each edge e of T to an object in D(k[t±1 ]) ⊂ RModk[t1] =
F(e). This follows for instance by observing that these objects are exactly the right
orthogonal objects to H(T,FT)Ind-fin ≃ H(T,Fmnd

T ), as follows from Lemma 6.17.
This lemma thus follows from the further observation that an object ML

γ evaluates
at all edges of T to D(k[t±1 ]) ⊂ D(k[t1]) if and only if L ∈ D(k[t±1 ]) ⊂ D(k[t1]).

Notation 6.23. Given a matching datum (γ, k[t±1 ]) in S\M , we denote Nγ :=
M

k[t±1 ]
γ .
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We note that given a matching datum (γ, k[t±1 ]) with local value k[t±1 ], all end-
points of γ lie in ∂S\M . Specializing the definition of a matching datum (γ, L) to
the case L = k[t±1 ], we thus find that (γ, k[t±1 ]) is fully determined by γ, if γ is open,
or by γ, the rank a and the monodromy equivalence µ : k[t±1 ]⊕a ≃ k[t±1 ]⊕a, if γ is
closed.

Remark 6.24. Given a matching datum (γ, k[t±1 ]) with γ closed and of rank a, the
monodromy equivalence µ : k[t±1 ]⊕a ≃ k[t±1 ]⊕a can be considered via Lemma 6.4 as
an a × a-matrix with entries in k. Since k is algebraically closed, µ is similar to a
Jordan block matrix. Replacing µ by a similar matrix has no effect on Nγ. We will
thus always assume that µ is a Jordan matrix.

If there is more than one Jordan block in the Jordan normal form of µ, Nγ splits
into multiple direct summands. We will thus always assume that µ consists of a
single Jordan block. Its eigenvalue λ ∈ k×, together with the rank a of (γ, k[t±1 ]) fully
determine µ. We may thus equivalently specify µ or λ. We call λ the monodromy
datum of (γ, k[t±1 ]).

For the geometric model for CS it suffices to consider pure matching curves:

Lemma 6.25. Consider a matching datum (γ, k[t±1 ]). Then there exists a canonical
matching datum (γ̃, k[t±1 ]), such that γ̃ is pure and homotopic to γ relative ∂S\M .
The pure matching curve γ̃ is furthermore uniquely determined by this property.
Furthermore, there exists an equivalence of global sections

Nk[t±1 ]
γ ≃ N

k[t±1 ]
γ̃ ∈ CS .

Proof. Using that ϕ∗(k[t±1 ]) ≃ 0, it is easy to see that for any 1 ≤ i, j ≤ 3, i ̸= j,
that Mk[t±1 ]

δi,j ≃ M
k[t±1 ]
δj,i as sections of FT, using the notation from Construction 5.40.

In other words, on the level of segments, the associated local sections do not distin-
guish between segments which are homotopic by a homotopy crossing vertices of T.
Replacing segments of γ of the form δi,j with 2 = j − i ∈ Z/3Z by segments δj,i, we
thus obtain a pure matching curve γ̃, which is homotopic to γ relative ∂S\M , and
unique with this property. The curve γ̃ gives rise to a matching datum (γ̃, k[t±1 ]),
and since the change in the segments did not change the associated local sections,
up to equivalence, we find that the glued global sections are also equivalent.

Remark 6.26. Given a matching curve γ, we call the unique pure matching curve
γ̃ which is homotopic to γ relative ∂S\M the purification of γ.

Specializing Theorems 5.53 and 5.54 to L = k[t±1 ], we obtain the following.

Theorem 6.27. Let γ, γ′ be two distinct pure matching curves in S\M . Let a be
the rank of γ and a′ the rank of γ′. There exists an equivalence in D(k[t±2 ])

MorCS(Nγ, Nγ′) ≃ k[t±1 ]⊕aa′icr(γ,γ′)⊕ibdry(γ,γ′) .
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Theorem 6.28. (i) Let γ : [0, 1]→ S be an open matching curve in S\M . There
exists an equivalence in D(k[t±2 ])

MorCS(Nγ, Nγ) ≃ k[t±1 ]⊕1+2icr(γ,γ)+ibdry(γ,γ) .

(ii) Let γ : S1 → S be a closed matching curve in S\M of rank a. There exists an
equivalence in D(k[t±2 ])

MorCS(Nγ, Nγ) ≃ k[t±1 ]⊕2a+2a2icr(γ,γ) .

We end this section with the definitions of arcs and ideal triangulations.

Definition 6.29. An open, pure matching curve γ : [0, 1] → S\M is called an arc
if it has no self-crossings. An arc is called a boundary arc, if it cuts out a monogon.
An arc is called an internal arc, if it is not a boundary arc.

Remark 6.30. The notion of an internal arc in the sense of Definition 6.29 co-
incides with the notion of an arc from [FT18, Def. 5.2], except that we use a dif-
ferent convention regarding endpoints. For us, endpoints lie in ∂S\M , whereas in
loc. cit. endpoints lie in M . These two perspectives are however equivalent, as can
be seen by expanding the marked points to intervals, contracting their complements
to points and using that arcs are considered up to homotopy.

For more background and examples of ideal triangulations, we refer to [FST08].

Definition 6.31. Two arcs in S\M are called compatible, if they do not have any
crossings. An ideal triangulation of S consists of a maximal (by inclusion) collection
I of pairwise compatible arcs in S\M .

We note that any ideal triangulation of S contains all boundary arcs of S and
that any two ideal triangulations of S have the same cardinality.

6.2.2 Skein relations from mapping cones

In this section, we collect geometric descriptions of the cones of the morphisms be-
tween the objects of CS associated to the matching curves. Similar descriptions of
cones in the derived categories of gentle algebras appear in [OPS18]. We fix two
open, pure matching curves γ, γ′ in S\M and distinguish two cases.

Case 1: γ and γ′ have a crossing.
There are two possible smoothings of this crossing, each consisting of two match-

ing curves in S\M , denoted γ1, γ2 and γ3, γ4. The first curve in each of the two
smoothings is obtained by starting at an endpoint of γ and tracing along γ up to
that crossing, and then tracing along γ′ in one of two possible directions. Similarly,
the second curve in the two smoothings is obtained by starting at the other endpoint
of γ, tracing along γ up to the crossing, and then tracing along γ′ to the other end.
This process is locally at the crossing illustrated on the left in Figure 7.

195



γ

γ′

γ1

γ2 γ3

γ4

γ

γ′γ1

Figure 7: On the left: a crossing of two matching curves γ, γ (in blue) and the
two possible smoothings γ1, γ2 and γ3, γ4 (in different shades of blue/green). On
the right: a directed boundary intersection of two matching curves γ, γ′ and the
corresponding smoothed composite γ1.
The boundary of S is depicted in green. Outside of the depicted parts of S, the
matching curves continue identically.

Case 2: there is a directed boundary intersection from γ to γ′.
We can compose γ with part of a boundary component of S\M and γ′ to a curve,

which we then smooth to a matching curve γ1. This process is illustrated on the
right in Figure 7.

To both types of intersection, Theorems 6.27 and 6.28 associate a direct sum-
mand of the morphism object MorCS(Nγ, Nγ′) and also MorCS(Nγ, Nγ′) in case of a
crossing. Proposition 6.32 describes the cones of these morphisms in terms of the
above smoothings.

Proposition 6.32. Let γ, γ′ be two matching curves in S\M .

(1) Suppose that γ and γ′ have a crossing. There exist fiber and cofiber sequences
in CS

Nγ1 ⊕Nγ2 → Nγ
α−→ Nγ′ , Nγ3 ⊕Nγ4 → Nγ′

β−→ Nγ ,

with γ1, γ2 and γ3, γ4 being the two possible smoothings of the crossing. The mor-
phisms α and β describe any non-zero degree 0 elements of the direct summands
k[t±1 ] ⊂ MorCS(Nγ, Nγ′), k[t±1 ] ⊂ MorCS(Nγ′ , Nγ) associated to the crossing in
Theorem 6.27.

(2) Suppose that there is a directed boundary intersection from γ to γ′. There exist
a fiber and cofiber sequence in CS

Nγ1 → Nγ
α−→ Nγ′ ,

with γ1 the smoothed composite of γ, γ′. The morphism α describes any non-zero
degree 0 element of the direct summand k[t±1 ] ⊂ MorCS(Nγ, Nγ′) associated to
the directed boundary intersection in Theorem 6.27.
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Proof. The Proposition follows from a direct computation, using the descriptions of
Nγ and Nγ′ as coCartesian sections of the Grothendieck construction of Fclst

T .

Remark 6.33. The matching curves γi appearing as the smoothings of intersections
in Proposition 6.32 are not necessarily pure. We may however replace γi by its
purification γ̃i, since Nγi ≃ Nγ̃i , see Lemma 6.25.

Remark 6.34. Part (1) of Proposition 6.32 matches the q = 1 Kauffman Skein
relations, see Definition 6.48. After purifying as indicated in Remark 6.33 Propo-
sition 6.32 also matches for arc the Ptolemy cluster exchange relations, see Defini-
tion 6.45.

6.2.3 The geometrization Theorem

We introduce an equivalence relation ∼ on pure matching data (γ, k[t±1 ]) generated
by the following relation.. Let γrev be the matching curve obtained by reversing
the orientation of γ. If γ is open, we set (γ, k[t±1 ]) ∼ (γrev, k[t±1 ]). If γ is closed
of rank a with monodromy datum λ ∈ k×, we set (γ, k[t±1 ]) ∼ (γrev, k[t±1 ]), where
(γrev, k[t±1 ]) is the matching datum with rank a and monodromy datum λ−1. Note
that Nγ ≃ Nγrev by Remark 5.45.

The main result of this section is the following Theorem, proving that all com-
pact objects in CS are geometric, meaning that they arise as direct sums of object
associated to pure matching curves.

Theorem 6.35 (The geometrization Theorem). Let X ∈ CS be a compact object.
Then there exists a unique and finite set J of equivalence classes of pure matching
data with local value k[t±1 ], under the relation defined above, and an equivalence in
CS

X ≃
⊕

(γ,k[t±1 ])∈J

Nγ .

Corollary 6.36. The full subcategory CcS ⊂ CS of compact objects is Krull-Schmidt,
meaning that every objects splits into a direct sum of objects with local endomorphism
rings.

Proof of Corollary 6.36. As shown in the proof of Theorem 6.35, every compact
object X of CS splits as the direct sum X ≃⊕γ∈J Nγ, with J a set of pure matching
curves. The endomorphism rings of these objects are local by Corollary 5.62.

The proof of the geometrization Theorem makes use of the gluing description of
global sections arising from matching curves and the description of global sections
in terms of coCartesian sections of the Grothendieck construction. Given a compact
object X of CS, corresponding to a global section of Fclst

T , we can evaluate it at any
edge e of the ribbon graph T. If the value is non-zero we can choose a direct sum
decomposition of this value with a non-zero direct summand. Let v be a vertex inci-
dent to e. As we show in Construction 6.37 that we can find a lift along the functor
Fclst
T (v → e) of the direct sum decomposition at e to a direct sum decomposition
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of the value of X to v. This then give rise to direct sum decompositions at further
edges incident to v. Proceeding this way, we choose repeated direct sum decomposi-
tions of the values of X at all vertices and edges of T. The main difficulty with this
argument is, that the direct sum decompositions which we find are not necessarily
preserved under Fclst

T (v → e). A fiddly argument shows that we can further tweak
the chosen direct sum decompositions, so that they are preserved, and thus glue to
a global section, which is a non-zero direct summands of X. The summand of X so
constructed is obtained from gluing local sections associated to segments and hence
geometric, i.e. arises from a pure matching curve. Repeating this argument, we find
a splitting of X into geometric direct summands. The uniqueness of the set C in
the geometrization Theorem is proven separately.
Construction 6.37. Let S be the 3-gon and e an edge of a trivalent spanning
graph T of S. Let X ∈ Cc

S and let eve(X) ≃ B ⊕ A⊕B′ with A ̸= 0. We construct
two direct sum decompositions X ≃ Z ⊕ Y ⊕ Z ′ and X ≃ Z̃ ⊕ Y ⊕ Z̃ ′, called
the counterclockwise and clockwise splittings. These further satisfy that the arising
equivalences

eve(Z)⊕ eve(Y )⊕ eve(Z ′) ≃ B ⊕ A⊕B′

eve(Z̃)⊕ eve(Y )⊕ eve(Z̃ ′) ≃ B ⊕ A⊕B′

are lower triangular with invertible diagonals.
The generalized cluster category CS of S is equivalent to the functor category

Fun(∆1,D(k[t±1 ])), whose objects are diagrams x → y with x, y ∈ D(k[t±1 ]). In the
following, we set CS = Fun(∆1,D(k[t±1 ])). The functor eve : CS → D(k[t±1 ]) can be
chosen to evaluate a functor ∆1 → D(k[t±1 ]) at its value at 1 ∈ ∆1 (recall that ∆1

has the vertices 0, 1). There are three indomposable objects in CS, corresponding
to the three boundary arcs in S\M (there are no further pure matching curves in
S\M). Explicitly, these objects can be described as follows.

N1 =
(
0→ k[t±1 ]

)
N2 =

(
k[t±1 ] ≃−→ k[t±1 ]

)
N3 =

(
k[t±1 ]→ 0

)
The homotopy category of D(k[t±1 ]) is equivalent to the abelian 1-category of k-
vector spaces, see Lemma 6.4. We thus treat objects in D(k[t±1 ]) as vector spaces in
the following.

All compact objects in D(k[t±1 ]) are a finite direct sums of copies of k[t±1 ]. Using
that every morphism in D(k[t±1 ]) splits, we may assume that the object X ∈ CS is
equivalent to an object of the form

k[t±1 ]⊕j ⊕ k[t±1 ]⊕l M−→ k[t±1 ]⊕j ⊕ k[t±1 ]⊕i ,

with M =
(

idk[t±1 ]⊕j 0
0 0

)
and i, j, l ≥ 0. We thus have eve(X) = k[t±1 ]⊕j ⊕ k[t±1 ]⊕i

and a splitting
X ≃

(
k[t±1 ]⊕l → 0

)
⊕
(
k[t±1 ]⊕j ↪→ k[t±1 ]⊕j ⊕ k[t±1 ]⊕i

)
.
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We denote the first summand by O and the second by U . Note that eve(O) = 0.
Let C = (B ⊕ A) ∩ k[t±1 ]⊕j. We define V as the diagram C → B ⊕ A in

D(k[t±1 ]). It is easy to see that the apparent morphism V → U in CS admits a
retraction. We can thus choose a splitting U ≃ V ⊕ Q′. By construction, we have
eve(V ) = B ⊕ A. Next, we define D = B ∩ k[t±1 ]⊕j. Then we again obtain a direct
summand Q = (D → B) ↪→ V . We choose a direct sum complement V ≃ Q ⊕ Y .
We have eve(Q) ⊕ eve(Y ) ⊕ eve(Q′) ≃ B ⊕ A ⊕ B′ and this equivalence is lower
triangular with invertible diagonals.

We set Z = Q, Z ′ = Q′ ⊕ O and Z̃ = Q ⊕ O, Z̃ ′ = Q′. This gives the desired
splittings X ≃ Z ⊕ Y ⊕ Z ′ and X ≃ Z̃ ⊕ Y ⊕ Z̃ ′.

Lemma 6.38. Consider the setup of Construction 6.37 and the counterclockwise
and clockwise splittings

X ≃ Z ⊕ Y ⊕ Z ′ and X ≃ Z̃ ⊕ Y ⊕ Z̃ ′ .

Denote by e1 the edge of T following the edge e in the counterclockwise direction and
by e2 the edge of T following the edge e in the clockwise direction.

(1) Suppose that Y ≃ N1. Then any autoequivalence ϕ of eve1(Z) ⊕ eve1(Y ) ⊕
eve1(Z ′) given by a lower triangular matrix lifts to an autoequivalence of Z ⊕
Y ⊕ Z ′ given by a lower triangular matrix.

(2) Suppose that Y ≃ N2. Any autoequivalence ϕ of eve2(Z̃) ⊕ eve2(Y ) ⊕ eve2(Z̃ ′)
given by a lower triangular matrix lifts to an autoequivalence of Z̃⊕Y ⊕Z̃ ′ given
by a lower triangular matrix.

Proof. We only prove part (1), part (2) is analogous. By construction, we can find
splittings Z ≃ ⊕

i1 N1 ⊕
⊕

j1 N2 and Z ′ ≃ ⊕
i2 N1 ⊕

⊕
j2 N2 ⊕

⊕
lN3. We have

eve1(N2) ≃ 0 and eve1(N3) ≃ eve1(N1) ≃ k[t±1 ]. We further find MorCS(Nx, Ny)
eve1−−→

MorD(k[t±1 ])(k[t±1 , k[t±1 ]) to be an equivalence for x = y = 1, x = 3, y = 1 or x = y = 3.
It is thus clear that we can find a unique lift of ϕ, which restricts to the identity on⊕

j1 N2 ⊕
⊕

j2 N2.

As shown in Lemma 6.38, the clockwise and counterclockwise splitting have the
advantage that we can lift certain autoequivalences of their values at an edge to
autoequivalences of the splitting. We will need these autoequivalences to tweak
the choices of local splittings in the proof of the geometrization Theorem 6.35, by
replacing some splittings with their image under such an autoequivalence. After the
necessary tweaks, we will glue the arising two-term splittings Y ⊕ (Z ⊕ Z ′) ≃ X or
Y ⊕ (Z̃ ⊕ Z̃ ′) ≃ X.

Proof of Theorem 6.35, part 1: existence of the decomposition. Given an edge e of
T and X ∈ CS, we denote by eve(X) ∈ Fclst

T (e) ≃ D(k[t±1 ]) the value of the co-
Cartesian section X at e. Similarly, given a vertex v of T, we denote by resv(X)
the restriction of the coCartesian section X to v and its three incident edges. The
object resv(X) can be considered as an object in CSv , with Sv a 3-gon. Note also
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that CSv ≃ Fclst
T (v), with the equivalence given by evaluation at v. We show that if

X ̸= 0, then there is a splitting X ≃ Nγ ⊕ T for a matching datum (γ, k[t±1 ]). By a
descending induction on the total dimension over k of ⊕e∈T1 eve(X), the existence
of the desired decomposition then follows.

Let 0 ̸= X ∈ CS be compact. Let e0 be an external edge of T with eve0(X) ̸= 0.
If such an external edge does not exist, choose e0 instead to be an internal edge with
eve0(X) ̸= 0. Choose any direct sum decomposition B0 ⊕ A0 ⊕ B′

0 ≃ eve0(X) with
A0 ≃ k[t±1 ]. Let v1 be a trivalent vertex incident to e0.

With this starting data, we iteratively make choices of edges ei with incident
vertices vi and vi+1 and find splittings Bi ⊕ Ai ⊕ B′

i ≃ evei(X) and Ti ⊕ Si ⊕ T ′
i ≃

resvi(X) as follows.
Suppose the data for i has been chosen. Let vi+1 ̸= vi be the other vertex incident

to ei. The summand Si := Y appearing in both the clockwise and counterclockwise
splittings of resvi+1(X) is of the form Y ≃ Nδ, with δ a segment starting at the edge ei
and ending at another edge, called ei+1. If ei+1 follows ei in the clockwise direction,
we use the clockwise splitting from Construction 6.37 arising from Bi ⊕ Ai ⊕ B′

i

to obtain a splitting Ti+1 ⊕ Si+1 ⊕ T ′
i+1 of resvi+1(X). If ei+1 instead follows ei in

the counterclockwise direction, we instead use the counterclockwise splitting. By
Construction 6.37, we have an equivalence ϕ : evei(Ti+1)⊕ evei(Si+1)⊕ evei(T ′

i+1) ≃
evei(X) ≃ Bi ⊕ Ai ⊕ B′

i which is given by a lower triangular matrix with invertible
diagonal. By Lemma 6.38, we can find compatible autoequivalences of Tj ⊕ Sj ⊕ T ′

j

for all 1 ≤ j ≤ i−1 and of Bj⊕Aj⊕B′
j for all 0 ≤ j ≤ i−1, such that the composite

at Bi ⊕ Ai ⊕ B′
i with ϕ is a diagonal matrix. We redefine all Sj, Tj, T ′

j , Aj, Bj, B
′
j

by their images under these autoequivalences. We then set Ai+1 = evei+1(Si+1) and
Bi+1 = evei+1(Ti+1), B′

i+1 = evei+1(T ′
i+1).

We proceed with making these choices, until we come to a stop in one the fol-
lowing cases below. If e0 is external, we always come to a stop in the following case,
as otherwise one can find a contradiction to X being a coCartesian section.

Case 1) We have started at an external edge e0 and arrive at an external edge
eN with N ≥ 1.

In this case, the Si’s, with 1 ≤ i ≤ N , glue to a global section S ⊂ X, satisfying
resv(S) = ⊕

vj=v Sj. Similarly, there is a global section T ⊂ X satisfying resv(T ) =⋂
vj=v Tj ⊕ T ′

j if there is at least one 1 ≤ j ≤ N with vj = v and resv(T ) = resv(X)
if there are no j with vj = v. The arising map S ⊕ T → X restricts pointwise to an
equivalence, and is hence also an equivalence of global sections. At each vertex vi,
we have by construction Si ≃ Nδi for a segment δi at vi. We compose these segments
to an open pure matching curve γ. We find that S ≃ Nγ is geometric. This gives
the desired splitting X ≃ Nγ ⊕ T .

Suppose now that we did not stop in case 1). We may then assume that eve(X) ≃
0 for all external edges e.

Case 2) There is a non-empty set J ⊂ {0, . . . , N − 1}, such that eN = ej for
all j ∈ J and AN ⊂ ⟨Aj⟩j∈J lies in the submodule of eveN (X) generated by the
Aj’s. Note that in this case J contains the element 0, as otherwise we again get a
contradiction to X being coCartesian. We obtain a direct summand S ⊂ X with
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complement T , satisfying resv(S) = ⊕
vj=v, j<N Sj and resv(T ) = ⋂

vj=v, j<N Tj ⊕ T ′
j

or resv(T ) = resv(X) if there are no j < N , such that vj = v.
Again, at each vertex vi we have by construction Si ≃ Nδi for a segment δi at

vi. We compose these segments to a closed curve γ. If γ is given by the composite
of a identical closed curves γ′, we have that the number N of segments of γ is a
multiple of a and ei = ei+jN/a for 1 ≤ j ≤ a − 1 and 0 ≤ i ≤ N/a. We relabel
Ai = ⊕

0≤j≤a−1 Ai+jN/a and Si = ⊕
0≤j≤a−1 Si+jN/a for 0 ≤ i < N/a. We have chosen

γ′ so that it is not again given by the composite of multiple identical closed curves.
To extend γ′ to a matching datum, we need to specify a rank and a monodromy
datum.

We choose an ordered basis U0 of A0 = eve0(S1) ∈ D(k[t±1 ]) with cardinality a.
Consider the basis U ′

1 of resv1(S1) which is mapped under S1(v1 → e0) to the chosen
basis U0. The image of U ′

1 under S1(v1 → e1) defines an ordered basis U1 of A1. From
this, we again find a basis U ′

2 of resv2(S2). Proceeding in this way, performing these
steps N/a times, we obtain a second ordered basis UN/a of AN/a = A0. Consider the
Jordan normal form of the linear map, which maps UN/a to U0. For each Jordan
b × b-block with eigenvalue λ ̸= 0, we can equip γ with rank b and monodromy
datum λ. With these choices of monodromy data, we finally have S ≃ ⊕

blocks Nγ,
where the sum runs over the Jordan blocks. We thus have the desired splitting
X ≃ ⊕blocks Nγ ⊕ T , concluding the proof.

Proof of Theorem 6.35, part 2: uniqueness of decomposition. Part 1 of the proof of
Theorem 6.35 and the proof of Corollary 6.36 show that CS is Krull-Schmidt, or
equivalently the homotopy 1-category hoCS is Krull-Schmidt. The essential unique-
ness of a decomposition into indecomposables in a Krull-Schmidt category is shown
in [Kra15, Theorem 4.2]. It thus suffices to show that for two pure matching data
(γ, k[t±1 ]), (γ′, k[t±1 ]), we have Nγ ≃ Nγ′ if and only if (γ, k[t±1 ]) ∼ (γ′, k[t±1 ]). It is now
easy to see that Nγ ≃ Nγ′ implies that γ and γ′ are either both open or both closed.
In the former case, we can argue by using Theorem 6.27, by testing Nγ, Nγ′ against
objects arising from different matching curves to conclude (γ, k[t±1 ]) ∼ (γ′, k[t±1 ]).

If γ and γ′ are closed, we distinguish the cases that the matching curves underly-
ing γ and γ′ are identical (up to reversal of orientation) or not. In the first case, one
can show that MorCS(Nγ, Nγ′) ≃ 0 if the monodromy data of (γ, k[t±1 ]) ∼ (γ′, k[t±1 ])
are distinct; it follows that Nγ, Nγ′ are also distinct. In the second case, a similar
argument as in the case of open matching curves applies to show that the open
curves composed of segments η and η′, obtained from cutting γ and γ′ open at an
edge of T, are identical. This shows that γ and γ′ must be identical, concluding the
case distinction and the proof.

6.3 Categorification of the cluster algebra with coefficients
For the entire section, we fix an unpunctured marked surface S. The field k is still
assumed to be algebraically closed. We further assume that char(k) ̸= 2.

We begin in the Sections 6.3.1 and 6.3.2 by recalling the definitions of the cluster
algebra and of the commutative Skein algebra associated with S. In Section 6.3.3,
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we show that the cluster-tilting objects in the exact ∞-/extriangulated generalized
cluster category CS are in bijection with the clusters of this cluster algebra. We
also describe the endomorphisms algebras of the relative cluster-tilting objects in
CS in terms of gentle algebras and discuss two simple examples. In Section 6.3.4, we
describe a cluster character on CS with values in the commutative Skein algebra.

6.3.1 Cluster algebras of marked surfaces

The goal of this section is to define the cluster algebra associated to S with coeffi-
cients in the boundary arcs. For the definition of cluster algebra, we follow [FWZ16,
Chapter 3].

Definition 6.39. Let F = Q(x1, . . . , xm1+m2) be the field of rational functions in
m1 +m2 variables. A (labeled) seed

(
x, M̃

)
in F consists of

• an m1 +m2-tuple x = (x1, . . . , xm1+m2) in F forming a free generating set of
F and

• an (m1 + m2) ×m1-matrix M̃ , such that the upper m1 ×m1-matrix is skew-
symmetric2.

The tuple x is called a cluster and the elements x1, . . . , xm1+m2 are called cluster vari-
ables. The elements xm1+1, . . . , xm1+m2 are also called the frozen cluster variables.
The matrix M̃ is called the extended mutation matrix.

Definition 6.40. Let
(
x, M̃

)
be a seed and l ∈ {1, . . . ,m1}. The seed mutation at

l is given by the seed
(
x′, µl(M̃)

)
with

• µl(M̃)i,j =


−M̃i,j if i = l or j = l

M̃i,j + M̃i,lM̃l,j if M̃i,l > 0 and M̃l,j > 0
M̃i,j − M̃i,lM̃l,j if M̃i,l < 0 and M̃l,j < 0
M̃i,j else.

• x′ = (x1, . . . , xl−1, x
′
l, xl+1, . . . , xm1+m2), where x′

l is determined by the cluster
exchange relation

x′
lxl =

∏
j with M̃j,l>0

x
M̃j,l

j +
∏

j with M̃j,l<0

x
−M̃j,l

j .

Definition 6.41. Let (x, M̃) be a seed.

• The associated cluster algebra CA ⊂ F is the Q-subalgebra of F generated
by all cluster variables in all seeds obtained from (x, M̃) via iterated seed
mutation.

2A possible generalization considers skew-symmetrizable matrices, see [FWZ16, Definition
3.1.1].
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• The associated upper cluster algebra UCA ⊂ F is the Q-subalgebra consisting
of those elements which, for every cluster of CA, are Laurent polynomials in
the cluster variables of that cluster.

Remark 6.42. The cluster algebra or upper cluster algebra associated to a seed
only depends on the extended mutation matrix, up to isomorphism of Q-algebras.
We can thus speak of the cluster algebra or upper cluster algebra associated to an
extended mutation matrix.

We proceed in Definition 6.43 with associating an extended mutation matrix
to a choice of ideal triangulation I of S in the sense of Definition 6.31. Choosing
a different ideal triangulation changes the extended mutation matrix by matrix
mutations.
Definition 6.43 ([FST08, Definition 4.1], [FT18]). Let I be an ideal triangulation
of S with m1 interior arcs, labeled arbitrarily as 1, . . . ,m1, and m2 boundary arcs,
labeled arbitrarily as m1 + 1, . . . ,m1 +m2.

The extended signed adjacency matrix M̃I = ∑
∆ M∆ of I is the (m1 +m2)×m1-

matrix given by the sum over all vertices ideal triangles ∆ of I of the (m1+m2)×m1-
matrices defined by

(M∆)i,j =


1 if ∆ has sides i and j with i following j in the counterclockwise direction,
−1 if ∆ has sides i and j with i following j in the clockwise direction,
0 else.

The upper m1×m1-matrix of M̃I is skew-symmetric and called the signed adjacency
matrix.
Definition 6.44.

• Let S be an oriented marked surface with an ideal triangulation I. We define
CAS to be the cluster algebra associated to the extended mutation matrix
given by the extended signed adjacency matrix M̃I of I. Similarly, UCAS is
defined as the associated upper cluster algebra.

• We define CAloc
S as the localization of CAS at the frozen cluster variables

xm1+1, . . . , xm1+m2 , where m1 is the number of interior arc in I and m2 is the
number of boundary arcs in I.

Definition 6.45. Let γ, γ′ be two arcs in S\M . Suppose that γ, γ′ have a crossing
as in Figure 7. Then the Ptolemy relation is defined as γ · γ′ = γ1 · γ2 + γ3 · γ4.
Theorem 6.46. The cluster variables of CAS are canonically in bijection with the
arcs in S\M . A set of cluster variables of CAS forms a cluster if and only if the
corresponding arcs form an ideal triangulation of S. The cluster exchange relations
are the Ptolemy relations.

Proof. This is [FT18, Theorem 8.6] specialized to the case that S has no punctures.
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6.3.2 Commutative Skein algebras

We proceed with defining the commutative q = 1 Skein algebra Sk1(S) of links in
S\M . As shown in [Mul16], this algebra embeds into the upper algebra UCAS.

Definition 6.47. A link is a homotopy class relative ∂S\M of continuous maps
γ : U → S\M , with U a finite disjoint union of [0, 1]’s and S1’s, satisfying that
all existent endpoints of γ (possibly none) lie in ∂S\M and that away from the
endpoints, γ is disjoint from ∂S\M .

We consider links up to reversal of orientation. We refer to the curves with
domain U = [0, 1], S1 constituting a link as its components. There is an empty link
with U = ∅. We denote by L (S) the set of all links in S\M .

The Q-vector space QL(S) inherits the structure of a commutative Q-algebra, by
defining the product of two links to be the union of the two links and extending this
product Q-bilinearly.

Definition 6.48. We define the q = 1 Skein algebra Sk1(S) as the quotient of the
Q-algebra QL(S) by the ideal generated by the following elements.

1) The q = 1 Kauffman Skein relation.

− −

2) The value of the unknot.

+ 2

3) Any component with domain [0, 1] which is homotopic relative endpoints to a
subset of ∂S\M .

The relations in 1) and 2) are understood to describe local relations inside a small
disc (indicated by the dotted circle) in S, applicable to any subset of components of
a link. The depicted curves are identical outside the small disc.

Remark 6.49. The q = 1 Kauffman Skein relation recover the cluster exchange
relations given by the Ptolemy relation, see Definition 6.45.

We remark that Definition 6.48 is equivalent to the definition of the q-Skein
algebra given by Muller in [Mul16], with q set to 1, as can be seen by using Remarks
3.4 and 3.6 in [Mul16].
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Definition 6.50. We define the localized q = 1 Skein algebra Sk1,loc(S) as the
localization of Sk1(S) at the set of boundary arcs.

Theorem 6.51 ([Mul16]). There exist injective morphisms of Q-algebras

CAloc
S ↪→ Sk1,loc(S) ↪→ UCAS . (109)

If S additionally has at least two marked points, then the maps in (109) are equiva-
lences of Q-algebras.

6.3.3 Classification of cluster-tilting objects

We choose a trivalent spanning graph T of S. Consider the perverse schober Fclst
T

from Definition 6.6 with the k[t±2 ]-linear smooth and proper ∞-category of global
sections given by the generalized cluster category CS. We let G be the right adjoint
of the adjunction

F := ∂Fclst
T :

∏
e∈T∂1

Fclst
T (e)←→ CS :G :=

∏
e∈T∂1

eve

defined in Definition 3.37. The functor G admits a k[t±2 ]-linear 2-Calabi–Yau struc-
ture, see Theorem 6.20 and the adjunction F ⊣ G is spherical by Corollary 6.21.
By the results of Section 4.4.3, we obtain a Frobenius, 2-Calabi–Yau extrianguled
category (hoCc

S,Ext1,CY
CS

, s) arising from of a Frobenius exact ∞-structure on Cc
S.

Theorem 6.52.

i) Consider a pure matching datum (γ, k[t±1 ]) in S\M . Then Nγ is rigid in
(hoCc

S,Ext1,CY
CS

, s) if and only if γ is an arc.

ii) Consider a finite collection I of distinct arcs in S\M . Then ⊕
γ∈I Nγ is a

cluster-tilting object in (hoCc
S,Ext1,CY

CS
, s) if and only if I is an ideal triangula-

tion of S.

We prove Theorem 6.52 further below.

Corollary 6.53. There are canonical bijections between the sets of the following
objects.

• Clusters of the cluster algebra with coefficients CAS of S.

• Ideal triangulations of S.

• Cluster-tilting objects in (hoCc
S,Ext1,CY

CS
, s) up to equivalence.

Proof. Combining the geometrization Theorem 6.35 and Theorem 6.52, we obtain
that there is a bijection between the sets of equivalence classes of cluster-tilting
objects and ideal triangulations of S. The bijection between clusters and ideal
triangulation is Theorem 6.46.
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Lemma 6.54.

(1) Let γ, γ′ be two distinct pure matching curves in S\M . Then

MorCY
CS

(Nγ, Nγ′) ⊂ MorCS(Nγ, Nγ′)

consists of those direct summands identified in Theorem 6.27 which correspond
to crossings of γ and γ′.

(2) Let γ be an open matching curve in S\M . Then

MorCY
CS

(Nγ, Nγ) ⊂ MorCS(Nγ, Nγ)

consists of those direct summands identified in Theorem 6.28 which correspond-
ing to self-crossings.

(3) Let γ be a closed matching curve in S\M . Then

MorCY
CS

(Nγ, Nγ) = MorCS(Nγ, Nγ) .

Proof. Inspecting the construction of the direct summands of MorCS(Nγ, Nγ′) cor-
responding to the different types of intersections, one finds the following.

• Boundary intersections give rise to morphisms which evaluate non-trivially at
an external edge of T, i.e. do not get mapped by G to zero.

• Crossings give rise to morphisms which restrict to zero on all external edges
of T and thus define direct summands lying in MorCY

CS
(Nγ, Nγ′).

• If γ is open, then the direct summand k[t±1 ] ⊂ MorCS(Nγ, Nγ) does not evaluate
to zero under G.

• If γ is closed, then G(Nγ) ≃ 0 and hence MorCY
CS

(Nγ, Nγ) = MorCS(Nγ, Nγ).

This shows the Lemma.

Proof of Theorem 6.52. We begin with part i). If γ is a closed matching curve, then
Nγ is not rigid because there is always a direct summand k[t±1 ] ⊂ MorCY

CS
(Nγ, Nγ) =

MorCS(Nγ, Nγ). We thus assume that γ is open. Theorem 6.27 and Lemma 6.54
imply that Nγ is rigid if and only if γ has no self crossings, meaning that γ is an
arc, showing part i).

Using Theorem 6.27 and Lemma 6.54, we find that given two arcs γ, γ′, we have
an isomorphism Ext1,CY

CS
(Nγ, Nγ′) ≃ 0 if and only if γ and γ′ are compatible in the

sense of Definition 6.31. By part i) and the maximality of an ideal triangulation,
we find that any basic, maximal rigid object is of the form ⊕

γ∈I Nγ for an ideal
triangulation I and conversely any ideal triangulation I gives rise to such a basic,
maximal rigid object. Since any cluster-tilting object is basic and maximal rigid, it
remains to verify that

Ext1,CY
CS

(
⊕
γ∈I

Nγ, Nγ′) ̸≃ 0 (110)

206



for I an ideal triangulation and (γ′, k[t±1 ]) a pure matching datum with γ′ /∈ I.
Let thus I be an ideal triangulation. Then I decomposes S into triangles with

edges the arcs in I. If a matching curve γ′ crosses an edge of one of these triangles,
we find a direct summand k[t±1 ] ⊂ MorCY

CS
(Nγ, Nγ′), showing (110). If γ′ does not

cross any arcs in I, then γ′ is contained in an ideal triangle and hence already in I.
This shows (110) and that ⊕γ∈I Nγ is cluster-tilting.

Recall that given a trivalent spanning graph T of S, we denote the associated
relative Ginzburg algebra by GT.

Proposition 6.55. Consider an ideal triangulation I of S with dual trivalent span-
ning graph T and let X = ⊕

γ∈I Nγ be the associated cluster-tilting object. There
exists an isomorphism of dg-algebras (with vanishing differentials)

H∗ MorCS(X,X) ≃ H0(GT)⊗k k[t±1 ] .

In particular, the discrete endomorphism algebra Ext0
CS

(X,X) of X is a gentle al-
gebra.

Proof. The object Nγ associated with an edge γ of I, dual to an edge e of T, is
given by Nce . The proposition thus follows from a minor variation of the proof of
Proposition 5.66.

Example 6.56. Consider the 4-gon S, depicted as follows, with an ideal triangula-
tion (in blue).

The generalized cluster category CS is equivalent to the 1-periodic derived ∞-
category of the A3-quiver, which can be defines as D(kA3 ⊗k k[t±1 ]). The arising
Jacobian gentle algebra is given by quotient of the path algebra of the quiver

1 2′

3

2 1′

a

b′c

c′b

a′

by the ideal (ba, cb, ac, b′a′, c′b′, a′c′).

Example 6.57. Consider the annulus S with a marked point on each boundary
component and an ideal triangulation depicted as follows.

207



The Jacobian gentle algebra is given by the quotient of the path algebra of the quiver

3

1 2

3′

b
a

a′

b

b′c′

by the ideal (ba, cb, ac, b′a′, c′b′, a′c′). This is a relative version of the Kronecker
quiver. While the mapping class group of the 4-gon in Example 6.56 is trivial, the
mapping class group of the annulus S is given by Z. The generator 1 ∈ Z corresponds
to a diffeomorphism rotating one boundary circle by one full rotation and fixing the
other boundary circle. Under the action of an element α of the mapping class group,
an object Nγ ∈ CS is mapped to Nα◦γ.

6.3.4 A cluster character on CS

We begin with describing the notion of a cluster character on an extriangulated
category, generalizing the notion of a cluster character of [Pal08].

Definition 6.58. Let (C,E, s) be a k-linear extriangulated category. We denote by
obj(C) the set of equivalence classes of objects in C. A cluster character χ on C
with values in a commutative ring R is a map

χ : obj(C)→ R

such that for all X, Y ∈ C the following holds.

• χ(X) = χ(Y ) if X ≃ Y .

• χ(X ⊕ Y ) = χ(X)χ(Y ) .

• χ(X)χ(Y ) = χ(B)+χ(B′) if dimk E(X, Y ) = dimk E(Y,X) = 1 and B,B′ ∈ C
are the middle terms of the corresponding non-split extensions of X by Y and
Y by X.

The last property is called the cluster multiplication formula.
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Given a pure matching curve γ in S\M , we consider the underlying curve as a
link in S\M with a single component, denoted l(γ).

Theorem 6.59. Let k be an algebraically closed field. Consider the map

χ : obj(hoCc
S)→ Sk1

S

determined by

• χ(A) = χ(B) if A ≃ B

• χ(A⊕B) = χ(A)χ(B)

• χ(Nγ) = l(γ) for any pure matching datum (γ, k[t±1 ]) in S\M .

Then χ is a cluster character on (hoCc
S,Ext1,CY

CS
, s).

Remark 6.60. Composing χ with Sk1
S ↪→ Sk1,loc

S ↪→ UCAS defines a cluster charac-
ter to the upper cluster algebra of S. If S has at least two marked points, the upper
cluster algebra is equivalent to the cluster algebra with coefficients CAloc

S localized
at the boundary arcs, see Theorem 6.51.

Proof of Theorem 6.59. The geometrization Theorem 6.35 shows that χ is well-
defined. It is also clear that χ satisfies all parts of Definition 6.58, except for the
cluster multiplication formula. We thus consider two pure matching data (γ, k[t±1 ])
and (γ′, k[t±1 ]) in S\M , which satisfy dimk Ext1,CY

CS
(Nγ, Nγ′) = 1 and let B,B′ ∈ Cc

S
be the corresponding extensions. Suppose that γ and γ′ are distinct. By Theo-
rem 6.27, dimk Ext1,CY

CS
(Nγ, Nγ′) = 1 implies that γ, γ′ have a single crossing. The

cluster multiplication formula χ(Nγ)χ(Nγ′) = χ(B)+χ(B′) thus follows from Propo-
sition 6.32, see also Remark 6.34.

If γ = γ′, we find that γ is closed and that (γ, k[t±1 ]), (γ′, k[t±1 ]) have the same
monodromy datum. Denote by a and a′ the ranks of γ and γ′. We show that
dimk Ext1,CY

CS
(Nγ, Nγ′) is always an even number and hence not equal to 1. Self-

crossings of γ give rise to two crossings of γ, γ′ and thus contribute the number 2aa′

to dimk Ext1,CY
CS

(Nγ, Nγ′). The global section Nγ arises as a coequalizer, see (81). It
follows that MorCS(Nγ, Nγ′) is equivalent to the fiber of some morphism

k[t±1 ]⊕aa′ −→ k[t±1 ]⊕aa′+2aa′icr(γ,γ′) . (111)

Inspecting the construction of the morphism (111), one finds that it lies in the im-
age of the functor ζ∗ : D(k[t±1 ])→ D(k[t±2 ]). Using that every morphism in D(k[t±1 ])
splits into a direct sum of an equivalence and a zero morphism, it follows that
MorCY

CS
(Nγ, Nγ′) = MorCS(Nγ, Nγ′) is free of even rank in D(k[t±1 ]), which implies

that dimk Ext1,CY
CS

(Nγ, Nγ) is indeed an even number. This concludes the case dis-
tinction and the proof.

Remark 6.61. The proof of Theorem 6.59 shows that there is some flexibility in the
formula for the cluster character. In fact, it appears that one can assign arbitrary
values to the closed matching curves of rank a ≥ 2.
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6.4 Further topics
In Section 6.4.1, we discuss the relation between the generalized cluster category
CS and the previously known 2-Calabi–Yau triangulated cluster category associated
with S. In Section 6.4.2, we describe the generalized n-cluster categories arising
from relative higher Ginzburg algebras associated to n-angulated marked surfaces.

6.4.1 The stable ∞-category of CS

Let S be a marked surface and CS the associated generalized cluster category, con-
sidered as a Frobenius exact ∞-category. We begin by noting that the mapping
class group action on CS induces an action on the stable ∞-category C̄S.

Proposition 6.62. The mapping class group action on CS induces an action on C̄S
by automorphisms in ho St.

Proof. The action of the mapping class group does not affect the values of the global
sections at the external edges of T. It follows that the action preserves the set W
from Proposition 4.49 and hence induces an action on the localization.

The homotopy 1-category ho C̄c
S of the stable∞-category C̄c

S is a triangulated cat-
egory and triangulated 2-Calabi–Yau, see Lemma 4.60. There is a second 2-Calabi–
Yau triangulated category associated to S, the cluster category denoted hoC′

S. The
stable ∞-category C′

S arises as the generalized cluster category of the non-relative
Ginzburg algebra associated to any choice of ideal triangulation I of S, see also Sec-
tion 5.1.1, which we denote by GI . The triangulated homotopy category of C′

S was
considered for instance in [BZ11]. One can observe a number of similarities between
C′

S and C̄c
S.

• The classifications of indecomposables in C̄c
S and C′

S, see [BZ11], match.

• It is shown in [ZZZ13] that the dimensions of the Ext1’s in C′
S match the

dimensions of the Ext1’s in C̄c
S, which are obtained by counting crossings of

the pure matching curves.

• Remark 4.67 shows that S−1[2] ≃ id on objects in C̄c
S, where S is the Serre

functor of CS. The action of the Serre functor can be described in terms of
the matching curves in terms of a partial rotation of the boundary circles of S.
A similar description of the shift functor in C′

S is given in [QZ17, Thm. 5.2].
One can also compare this description in the acyclic case to the orbit category
construction of the cluster category.

We hence expect the following.

Conjecture 6.63. There exist an equivalence of stable ∞-categories

C̄c
S ≃ C′

S .
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We prove a triangulated version of the conjecture in the acyclic case using the
results of [KR08].

Theorem 6.64. Suppose that there exist an ideal triangulation I of S, such that
the quiver underlying GI is acyclic. Then there exists an equivalence of triangulated
categories ho C̄cS ≃ hoC′

S.

Proof. The stable∞-category C̄c
S admits the structure of a k-linear∞-category, see

Lemma 4.50. Using that Cc
S is Krull-Schmidt and the classification of indecompos-

able objects, it is straightforward to check that C̄c
S is also idempotent complete.

Hence, it arises as the perfect derived ∞-category of a dg-category and the trian-
gulated homotopy category ho C̄c

S is an algebraic triangulated category. The trian-
gulated category ho C̄c

S is triangulated 2-Calabi–Yau by Lemma 4.60. It also has a
cluster-tilting object X with discrete endomorphism algebra H0(GI) as follows from
Proposition 6.55 and the fact that

Homho C̄c
S
(X,X) ≃ HomhoCc

S
(X,X)/P ,

with P the ideal of morphisms factoring through an injective projective object. The
Theorem now directly follows from the main result of [KR08].

Remark 6.65. The surfaces which admit an ideal triangulation I, such that the
quiver underlying GI is acyclic include the disc and the annulus, each with any
collection of boundary marked points.

6.4.2 Generalized n-cluster categories of marked surfaces

The study of 2-Calabi–Yau cluster categories admits a generalization to triangulated
(n − 1)-Calabi–Yau categories with n ≥ 3, called (n − 1)-cluster categories. Their
representation theoretic behavior is very similar to the 2-cluster categories. For
example, there is a notion of (n − 1)-cluster-tilting objects which admit mutations
similar to the 2-Calabi–Yau case. (n − 1)-Cluster categories for n ≥ 3 however do
not categorify cluster algebras. They can be constructed in the same ways as the 2-
cluster categories, for example as orbit categories or explicit geometric constructions.
There is also a higher Calabi–Yau-dimensional analog of Amiot’s construction of
generalized cluster categories, see [Guo11]. A possible input for this construction is
a higher Ginzburg algebra, meaning an n-Calabi–Yau version of the usual Ginzburg
algebra.

We fix a marked surface S and choose an n-valent spanning graph T of S. With
this setup, we described in Section 5 a relative higher Ginzburg algebra GT and a
T-parametrized perverse schober FT, with global sections its derived ∞-category
D(GT). In this section, we describe the generalized (n−1)-cluster category, denoted
Cn−1

S , arising from D(GT) and survey how our results generalize to this category.
Locally at each vertex of T, the perverse schober FT is encoded by the spherical

adjunction
ϕ∗ : D(k)←→ D(k[tn−2]) :ϕ∗ ,
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where ϕ : k[tn−2]
tn−2 7→0−−−−→ k. By Lemma 6.3, the quotient D(k[tn−2])/ IndD(k[tn−2])fin

is equivalent to the derived ∞-category D(k[t±n−2]) of (n − 2)-periodic chain com-
plexes.

Theorem 6.66. There exist a vanishing-monadic and nearby-monadic T-parametrized
perverse schober Fmnd

T and a locally constant T-parametrized perverse schober Fclst
T

with generic stalk D(k[t±n−2]) satisfying the following.

i) There is a semiorthogononal decomposition {Fclst
T ,Fmnd

T } of FT.

ii) There exists an equivalence

H(T,Fmnd
T ) ≃ IndDfin(GT) .

iii) There exists an equivalence

Cn−1
S := H(T,Fclst

T ) ≃ D(GT)/ IndDfin(GT) .

Proof. Analogous to the proofs of Proposition 6.9 and Theorem 6.15.

We thus find the generalized (n− 1)-Calabi–Yau cluster category

Cn−1
S ≃ D(GT)/ IndDfin(GT)

of the n-angulated marked surface S to be the topological Fukaya category of S
with coefficients in the derived ∞-category of (n− 2)-periodic chain complexes. In
particular, the well-known 2-periodic topological Fukaya category of a surface may
thus be seen as the generalized 3-cluster category of the surface.

The ∞-category Cn−1
S is smooth and proper as an (n− 2)-periodic, or 2(n− 2)-

periodic if n is odd, stable ∞-category. The functor∏
e∈T∂1

eve : Cn−1
S = H(T,Fclst

T ) −→
∏
e∈T∂1

Fclst
T (e) ≃

∏
e∈T∂1

D(k[t±n−2])

further admits a weak right (n− 1)-Calabi–Yau structure.
The results of Section 5 imply a geometric model for Cn−1

S , describing (a priori
a subset of) objects in Cn−1

S in terms of matching data with local value k[t±n−2][i],
0 ≤ i ≤ n−3. The main difference to the geometric model for CnS is thus that we may
associate objects to matching curves equipped with a grading datum in Z/(n− 3)Z.
Since in the n-gon, with n > 3, not every arc is homotopic to a pure matching
curve, objects associated with non-pure matching curves must be considered for
Cn−1

S . Theorems 5.53 and 5.54 thus do not describe all morphism objects between
the associated global sections. This should be considered as a technical artifact
arising from the approach to the geometric model which passes through the derived
∞-category D(GT) of the relative higher Ginzburg algebra. A direct approach is
applicable to prove analogs of Theorems 5.53 and 5.54 for all objects in Cn−1

S coming
from matching curves. Furthermore, the proof of the geometrization Theorem 6.35
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applies with minor modifications also to Cn−1
S , showing that all compact objects in

Cn−1
S arise from collections of graded matching curves in S\M .

As in Section 4.4.2, we can use the functor ∏e∈T∂1
eve to define an exact ∞-

structure on C
n−1,c
S and hence also an extriangulated structure on the homotopy

category hoCn−1,c
S . This exact ∞-structure is again Frobenius.
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